A rocket on a spring, related to potential/kinetic energy

AI Thread Summary
The discussion focuses on analyzing the forces acting on a rocket attached to a spring, highlighting the balance between the spring force and the weight of the rocket. The calculations show that the weight of the rocket is 117.6N and the spring compresses by 0.214m under this force. The conversation shifts to energy conservation, emphasizing that the initial kinetic energy is zero, and only the potential energy of the spring is relevant at the start. Participants point out that the energy equation overlooks the work done by the rocket and question the assumptions about the starting and ending points of the energy calculations. Clarification is sought on how to determine the final height of the rocket without time, indicating a need for a more comprehensive approach to the problem.
ChetBarkley
Messages
10
Reaction score
0
Homework Statement
A 12kg weather rocket generates a thrust of 200N. The rocket, pointing upward, is clamped to the top of a vertical spring. The bottom of the spring, whose spring constant is 550 N/m, is anchored to the ground.
A) Initially, before the engine is ignited, the rocket sits at rest on top of the spring. How much is the spring compressed.
B) After the engine is ignited, what is the rocket's speed when the spring has stretched 40cm?
Relevant Equations
F[sub]spring[\sub] = -k#\delta x#
U = mgy
K = .5mv^2
Part A) So from a force diagram we can see that the only two forces acting in our system are the spring force(positive y axis) and the weight of the rocket(negative y axis), which means the spring force is equal and opposite to the weight force.

The weight is simple enough ##12* 9.8=117.6N##
and then using the spring force equation we get the compressed length to be
##117.6N = -550(\delta x)##
##\delta x = \frac{117.6}{-550} = -0.214##m

Part B) Using the potential and kinetic energy equations and know that energy must be conserved we can use the following equation
##U spring, 0 +K spring,0+U rocket,0+ K rocket,0 = Uspring, 1 +Kspring,1+Urocket,1
+Krocket,1##

From this we know that the K.E. of the rocket and the spring initially, is zero(v=0 and the spring isn't stretched), meaning that the only term on the left side of our equation is the P.E. of the spring. On the right side, the P.E. of the spring finally is zero(spring is not compressed) and so we only have the P.E of the rocket and the K.E. of the spring and the rocket.
##\frac{1}{2}k(-\delta x)^2 = mgyf, rocket + \frac{1}{2} k (\delta x)^2 + \frac{1}{2} m (vf, rocket)^2##

Seeing this I'm not sure how to find the final height of the rocket as I wasn't given a time, nor am I sure where in my problem I could calculate time.
 
Last edited:
Physics news on Phys.org
The initial compression is not negative. The initial extension is.

Your energy equation neglects the work done by the rocket, and you wrongly state there is no final elastic PE.
But you cannot answer it just using energy. What can you do instead?
 
Last edited:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
 
ChetBarkley said:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
It says "clamped to the top of a vertical spring".
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top