A rocket on a spring, related to potential/kinetic energy

AI Thread Summary
The discussion focuses on analyzing the forces acting on a rocket attached to a spring, highlighting the balance between the spring force and the weight of the rocket. The calculations show that the weight of the rocket is 117.6N and the spring compresses by 0.214m under this force. The conversation shifts to energy conservation, emphasizing that the initial kinetic energy is zero, and only the potential energy of the spring is relevant at the start. Participants point out that the energy equation overlooks the work done by the rocket and question the assumptions about the starting and ending points of the energy calculations. Clarification is sought on how to determine the final height of the rocket without time, indicating a need for a more comprehensive approach to the problem.
ChetBarkley
Messages
10
Reaction score
0
Homework Statement
A 12kg weather rocket generates a thrust of 200N. The rocket, pointing upward, is clamped to the top of a vertical spring. The bottom of the spring, whose spring constant is 550 N/m, is anchored to the ground.
A) Initially, before the engine is ignited, the rocket sits at rest on top of the spring. How much is the spring compressed.
B) After the engine is ignited, what is the rocket's speed when the spring has stretched 40cm?
Relevant Equations
F[sub]spring[\sub] = -k#\delta x#
U = mgy
K = .5mv^2
Part A) So from a force diagram we can see that the only two forces acting in our system are the spring force(positive y axis) and the weight of the rocket(negative y axis), which means the spring force is equal and opposite to the weight force.

The weight is simple enough ##12* 9.8=117.6N##
and then using the spring force equation we get the compressed length to be
##117.6N = -550(\delta x)##
##\delta x = \frac{117.6}{-550} = -0.214##m

Part B) Using the potential and kinetic energy equations and know that energy must be conserved we can use the following equation
##U spring, 0 +K spring,0+U rocket,0+ K rocket,0 = Uspring, 1 +Kspring,1+Urocket,1
+Krocket,1##

From this we know that the K.E. of the rocket and the spring initially, is zero(v=0 and the spring isn't stretched), meaning that the only term on the left side of our equation is the P.E. of the spring. On the right side, the P.E. of the spring finally is zero(spring is not compressed) and so we only have the P.E of the rocket and the K.E. of the spring and the rocket.
##\frac{1}{2}k(-\delta x)^2 = mgyf, rocket + \frac{1}{2} k (\delta x)^2 + \frac{1}{2} m (vf, rocket)^2##

Seeing this I'm not sure how to find the final height of the rocket as I wasn't given a time, nor am I sure where in my problem I could calculate time.
 
Last edited:
Physics news on Phys.org
The initial compression is not negative. The initial extension is.

Your energy equation neglects the work done by the rocket, and you wrongly state there is no final elastic PE.
But you cannot answer it just using energy. What can you do instead?
 
Last edited:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
 
ChetBarkley said:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
It says "clamped to the top of a vertical spring".
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top