A rocket on a spring, related to potential/kinetic energy

Click For Summary
SUMMARY

The discussion focuses on the dynamics of a rocket attached to a vertical spring, analyzing the forces and energy transformations involved. The spring force and the weight of the rocket are the only forces acting on the system, with calculations revealing a spring compression of -0.214 meters under a weight of 117.6N. The conservation of energy is applied using the potential and kinetic energy equations, leading to a complex relationship between the spring's potential energy and the rocket's kinetic energy. The conversation highlights the need to clarify the starting and ending points of the energy equations to accurately determine the rocket's final height after detachment from the spring.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with potential and kinetic energy equations
  • Knowledge of spring force calculations
  • Basic principles of energy conservation
NEXT STEPS
  • Study the derivation of the spring force equation in detail
  • Learn about energy conservation in mechanical systems
  • Explore the dynamics of oscillatory motion in springs
  • Investigate the effects of external forces on energy calculations
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in the principles of energy conservation and dynamics in spring-rocket systems.

ChetBarkley
Messages
10
Reaction score
0
Homework Statement
A 12kg weather rocket generates a thrust of 200N. The rocket, pointing upward, is clamped to the top of a vertical spring. The bottom of the spring, whose spring constant is 550 N/m, is anchored to the ground.
A) Initially, before the engine is ignited, the rocket sits at rest on top of the spring. How much is the spring compressed.
B) After the engine is ignited, what is the rocket's speed when the spring has stretched 40cm?
Relevant Equations
F[sub]spring[\sub] = -k#\delta x#
U = mgy
K = .5mv^2
Part A) So from a force diagram we can see that the only two forces acting in our system are the spring force(positive y axis) and the weight of the rocket(negative y axis), which means the spring force is equal and opposite to the weight force.

The weight is simple enough ##12* 9.8=117.6N##
and then using the spring force equation we get the compressed length to be
##117.6N = -550(\delta x)##
##\delta x = \frac{117.6}{-550} = -0.214##m

Part B) Using the potential and kinetic energy equations and know that energy must be conserved we can use the following equation
##U spring, 0 +K spring,0+U rocket,0+ K rocket,0 = Uspring, 1 +Kspring,1+Urocket,1
+Krocket,1##

From this we know that the K.E. of the rocket and the spring initially, is zero(v=0 and the spring isn't stretched), meaning that the only term on the left side of our equation is the P.E. of the spring. On the right side, the P.E. of the spring finally is zero(spring is not compressed) and so we only have the P.E of the rocket and the K.E. of the spring and the rocket.
##\frac{1}{2}k(-\delta x)^2 = mgyf, rocket + \frac{1}{2} k (\delta x)^2 + \frac{1}{2} m (vf, rocket)^2##

Seeing this I'm not sure how to find the final height of the rocket as I wasn't given a time, nor am I sure where in my problem I could calculate time.
 
Last edited:
Physics news on Phys.org
The initial compression is not negative. The initial extension is.

Your energy equation neglects the work done by the rocket, and you wrongly state there is no final elastic PE.
But you cannot answer it just using energy. What can you do instead?
 
Last edited:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
 
ChetBarkley said:
Are the starting and ending points of my equations from when the engines are ignited to when the rocket is no longer in contact with the spring?
It says "clamped to the top of a vertical spring".
 

Similar threads

Replies
29
Views
3K
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 58 ·
2
Replies
58
Views
3K
Replies
17
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K