I A textbook passage describing coordinate lines in physical space

  • I
  • Thread starter Thread starter gnnmartin
  • Start date Start date
gnnmartin
Messages
86
Reaction score
5
TL;DR Summary
A picture illustrating coordinate lines 'swooping' through physical space.
In curved space, geodesics are curved relative to lines which are straight in the coordinate system. I remember seeing a text book that illustrated the corollary, the coordinate lines 'swooping' through physical space. I wish to reference it. I thought it was in 'Gravitation' by Milner Thorn & Wheeler, but if it is, I can't find it now.
 
Physics news on Phys.org
This might help. Gravitation, Misner, Thorne & Wheeler, 2017, page 4:
1745422098549.png

AM
 
gnnmartin said:
In curved space, geodesics are curved relative to lines which are straight in the coordinate system.
Just to note, this isn't particular to curved spaces. If you have curved coordinates in flat spacetime, inertial paths will be represented by curved lines in coordinate space.
 
Andrew Mason said:
This might help. Gravitation, Misner, Thorne & Wheeler, 2017, page 4:
View attachment 360283
AM
Thanks. I was aware of the M T &W's figure, but it is rather a 'third person' view annd not very quotable. The description I thought I remember reading talks about a first person view: someone in curved space visualising the coordinates. I thought I remembered a rather snappy quotable sentence, but can't remember it or whose it was.
 
Thanks.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top