I A textbook passage describing coordinate lines in physical space

  • I
  • Thread starter Thread starter gnnmartin
  • Start date Start date
gnnmartin
Messages
86
Reaction score
5
TL;DR Summary
A picture illustrating coordinate lines 'swooping' through physical space.
In curved space, geodesics are curved relative to lines which are straight in the coordinate system. I remember seeing a text book that illustrated the corollary, the coordinate lines 'swooping' through physical space. I wish to reference it. I thought it was in 'Gravitation' by Milner Thorn & Wheeler, but if it is, I can't find it now.
 
Physics news on Phys.org
This might help. Gravitation, Misner, Thorne & Wheeler, 2017, page 4:
1745422098549.png

AM
 
gnnmartin said:
In curved space, geodesics are curved relative to lines which are straight in the coordinate system.
Just to note, this isn't particular to curved spaces. If you have curved coordinates in flat spacetime, inertial paths will be represented by curved lines in coordinate space.
 
Andrew Mason said:
This might help. Gravitation, Misner, Thorne & Wheeler, 2017, page 4:
View attachment 360283
AM
Thanks. I was aware of the M T &W's figure, but it is rather a 'third person' view annd not very quotable. The description I thought I remember reading talks about a first person view: someone in curved space visualising the coordinates. I thought I remembered a rather snappy quotable sentence, but can't remember it or whose it was.
 
Thanks.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top