Graduate About computing the tangent space at 1 of certain lie groups

Click For Summary
To compute the tangent spaces at the identity for the Lie groups SL(n), SU(n), and U(n), one must define smooth curves γ: (-1, 1) → M such that γ(0) = I, the identity matrix. The tangent vector at the identity is obtained by expanding γ(t) into a Taylor series and evaluating the first derivative at t=0, denoted as ˙γ(0). For SL(n), the condition that the determinant remains 1 leads to the conclusion that the tangent space consists of trace-zero matrices, while for SU(n) and U(n), the conditions involve skew-Hermitian and Hermitian matrices, respectively. The process involves ensuring that the curves satisfy the defining equations of the respective groups while covering all dimensions of the tangent space.
aalma
Messages
46
Reaction score
1
Hello :),

I am wondering of the right and direct method to calculate the following tangent spaces at ##1##: ##T_ISL_n(R)##, ##T_IU(n)## and ##T_ISU(n)##.

Definitions I know:
Given a smooth curve ##γ : (− ,) → R^n## with ##γ(0) = x##, a tangent vector ##˙γ(0)## is a vector with components ##(˙γ1,..., ˙γn)##.
Two (smooth) curves ##γ,γ': (− ,) → M## with ##γ(0) = γ'(0) = x## are called equivalent if in a certain chart containing x (or in any chart) they define the same tangent vector at ##x##.
We define ##T_x(M)## to be the set of equivalence classes of curves as above. We note that ##T_x(M)## is a vector space: Choose a chart ##a : U → R^n## containing x. Then the assignment ##γ → d/dt (a ◦ γ)(0)## defines a bijection from ##T_x(M)## to ##R^n##. Different charts define different bijections, but they differ by the Jacobi matrix: if ##b : U → R^n## is another chart, the bijections from ##Tx(M)## to ##R^n## differ by the Jacobi matrix at ##a(x)## of the transformation ##b◦a^{−1} : a(U) → b(U)##.
Example: Let ##G = SO(n,R)## and let ##γ## be a curve in ##G## with ##γ(0) = 1##. Then we can write ##γ(s) = 1 + sA + o(s^2)## where ##A ∈ M_{n× n}## and we want to describe possible values for ##A##. Obviously ##γ(s)^t = 1 + sA^t + o(s^2)## so ##1 = γ(s)γ(s)^t = 1 + s(A + A^t) + o(s^2)## which implies that ##A## is skewsymmetric. In the opposite direction, if ##A## is skew-symmetric, ##γ(s) = e^{sA}## is orthogonal and ##e^{sA} = 1 + sA + o(s^2)##. We have proven that ##T_1(G)## in this case is the vector space of skew-symmetric matrices.

Can you please suggest a way to compute such tangent spaces.
 
Last edited:
Physics news on Phys.org
aalma said:
Is there a way to calculate the above tangent spaces in a way similar to the example I added?
You need to define curves ##\gamma \, : \,(-1,1) \longrightarrow M## with ##\gamma(0)=x## where ##x=I## is the identity matrix in your case. Then you expand ##\gamma(t)## into a Taylor series, and ##\dot\gamma(0)## will be your tangent vectors. Next, gather so many curves ##\gamma(t) ## such that you cover all ##\operatorname{dim}M## many possible directions to be able to span ##T_x(M).##

The procedure in the link does the same, only that it uses the canonical Cartesian coordinate system:
$$
T_x(M)=\operatorname{span}\left\{\sum_{i,j}^{\operatorname{dim}M} \left. a_{ij} \dfrac{\partial }{\partial x_{ij}}\right|_{t=0} \gamma(t)\right\}
$$
and the obvious curves
\begin{align*}
\gamma \, : \,(-1,1) &\longrightarrow M\\
t &\longmapsto \begin{pmatrix}1 &0 &\ldots &0\\ \ldots &x_{ij}&\ldots&0 \\ 0&0&\ldots& 1\end{pmatrix} \in M
\end{align*}
plus the defining equations, e.g. ##\det(a_{ij})=1## and / or ##(a_{ij}) + (a_{ij})^*=0.##The next problem is to find all curves. These are ##\operatorname{dim}M## many different ones since ##\operatorname{dim}T_x(M)=\operatorname{dim}M.##

In the linked article, I have chosen the easiest ones, still given the Cartesian coordinate system. E.g. a typical element of ##M=\operatorname{SL}(2)## looks like
\begin{align*}
X(t)&=\begin{pmatrix}x_{11}(t)&x_{12}(t)\\ x_{21}(t)&x_{22}(t) \end{pmatrix}\; \\&\wedge \;x_{11}(t)\cdot x_{22}(t)- x_{21}(t)\cdot x_{12}(t)=1\; \\&\wedge \;x_{11}(0)=1\, , \,x_{12}(0)=0\, , \,x_{21}(0)=0\, , \,x_{22}(0)=1
\end{align*}

and a typical curve accordingly
$$
\gamma (t)=X(t)\, , \,\gamma(0)=X(0)=I
$$
Differentiation for those matrices is easier than the full Taylor expansion. We are only interested in the second term evaluated at the identity matrix ##I## anyway. This would be the calculation in equations (26) and (27) for the determinant condition:
$$
\left. \dfrac{d}{dt}\right|_{t=0}\operatorname{det}(\gamma(t))=\left. \dfrac{d}{dt}\right|_{t=0}1=0=\operatorname{trace}\left(a_{ij}\right)
$$

Of course, you can choose your own charts (providing the coordinate system), curves (providing the tangent vectors at ##x=I##), and calculate the entire Taylor series, but the Cartesian charts, coordinate functions ##t\mapsto (x_{ij}(t))##, and the first derivative ##\left(\left. \dfrac{d}{dt}\right|_{t=0}x_{ij}(t)\right)## are likely the easiest you can get. The crucial condition is ##\gamma(t)\in M## with ##\gamma(0)=I.##
 
  • Like
Likes dextercioby, topsquark and aalma
fresh_42 said:
You need to define curves ##\gamma \, : \,(-1,1) \longrightarrow M## with ##\gamma(0)=x## where ##x=I## is the identity matrix in your case. Then you expand ##\gamma(t)## into a Taylor series, and ##\dot\gamma(0)## will be your tangent vectors. Next, gather so many curves ##\gamma(t) ## such that you cover all ##\operatorname{dim}M## many possible directions to be able to span ##T_x(M).##

The procedure in the link does the same, only that it uses the canonical Cartesian coordinate system:
$$
T_x(M)=\operatorname{span}\left\{\sum_{i,j}^{\operatorname{dim}M} \left. a_{ij} \dfrac{\partial }{\partial x_{ij}}\right|_{t=0} \gamma(t)\right\}
$$
and the obvious curves
\begin{align*}
\gamma \, : \,(-1,1) &\longrightarrow M\\
t &\longmapsto \begin{pmatrix}1 &0 &\ldots &0\\ \ldots &x_{ij}&\ldots&0 \\ 0&0&\ldots& 1\end{pmatrix} \in M
\end{align*}
plus the defining equations, e.g. ##\det(a_{ij})=1## and / or ##(a_{ij}) + (a_{ij})^*=0.##The next problem is to find all curves. These are ##\operatorname{dim}M## many different ones since ##\operatorname{dim}T_x(M)=\operatorname{dim}M.##

In the linked article, I have chosen the easiest ones, still given the Cartesian coordinate system. E.g. a typical element of ##M=\operatorname{SL}(2)## looks like
\begin{align*}
X(t)&=\begin{pmatrix}x_{11}(t)&x_{12}(t)\\ x_{21}(t)&x_{22}(t) \end{pmatrix}\; \\&\wedge \;x_{11}(t)\cdot x_{22}(t)- x_{21}(t)\cdot x_{12}(t)=1\; \\&\wedge \;x_{11}(0)=1\, , \,x_{12}(0)=0\, , \,x_{21}(0)=0\, , \,x_{22}(0)=1
\end{align*}

and a typical curve accordingly
$$
\gamma (t)=X(t)\, , \,\gamma(0)=X(0)=I
$$
Differentiation for those matrices is easier than the full Taylor expansion. We are only interested in the second term evaluated at the identity matrix ##I## anyway. This would be the calculation in equations (26) and (27) for the determinant condition:
$$
\left. \dfrac{d}{dt}\right|_{t=0}\operatorname{det}(\gamma(t))=\left. \dfrac{d}{dt}\right|_{t=0}1=0=\operatorname{trace}\left(a_{ij}\right)
$$

Of course, you can choose your own charts (providing the coordinate system), curves (providing the tangent vectors at ##x=I##), and calculate the entire Taylor series, but the Cartesian charts, coordinate functions ##t\mapsto (x_{ij}(t))##, and the first derivative ##\left(\left. \dfrac{d}{dt}\right|_{t=0}x_{ij}(t)\right)## are likely the easiest you can get. The crucial condition is ##\gamma(t)\in M## with ##\gamma(0)=I.##
fresh_42 said:
You need to define curves ##\gamma \, : \,(-1,1) \longrightarrow M## with ##\gamma(0)=x## where ##x=I## is the identity matrix in your case. Then you expand ##\gamma(t)## into a Taylor series, and ##\dot\gamma(0)## will be your tangent vectors. Next, gather so many curves ##\gamma(t) ## such that you cover all ##\operatorname{dim}M## many possible directions to be able to span ##T_x(M).##

The procedure in the link does the same, only that it uses the canonical Cartesian coordinate system:
$$
T_x(M)=\operatorname{span}\left\{\sum_{i,j}^{\operatorname{dim}M} \left. a_{ij} \dfrac{\partial }{\partial x_{ij}}\right|_{t=0} \gamma(t)\right\}
$$
and the obvious curves
\begin{align*}
\gamma \, : \,(-1,1) &\longrightarrow M\\
t &\longmapsto \begin{pmatrix}1 &0 &\ldots &0\\ \ldots &x_{ij}&\ldots&0 \\ 0&0&\ldots& 1\end{pmatrix} \in M
\end{align*}
plus the defining equations, e.g. ##\det(a_{ij})=1## and / or ##(a_{ij}) + (a_{ij})^*=0.##The next problem is to find all curves. These are ##\operatorname{dim}M## many different ones since ##\operatorname{dim}T_x(M)=\operatorname{dim}M.##

In the linked article, I have chosen the easiest ones, still given the Cartesian coordinate system. E.g. a typical element of ##M=\operatorname{SL}(2)## looks like
\begin{align*}
X(t)&=\begin{pmatrix}x_{11}(t)&x_{12}(t)\\ x_{21}(t)&x_{22}(t) \end{pmatrix}\; \\&\wedge \;x_{11}(t)\cdot x_{22}(t)- x_{21}(t)\cdot x_{12}(t)=1\; \\&\wedge \;x_{11}(0)=1\, , \,x_{12}(0)=0\, , \,x_{21}(0)=0\, , \,x_{22}(0)=1
\end{align*}

and a typical curve accordingly
$$
\gamma (t)=X(t)\, , \,\gamma(0)=X(0)=I
$$
Differentiation for those matrices is easier than the full Taylor expansion. We are only interested in the second term evaluated at the identity matrix ##I## anyway. This would be the calculation in equations (26) and (27) for the determinant condition:
$$
\left. \dfrac{d}{dt}\right|_{t=0}\operatorname{det}(\gamma(t))=\left. \dfrac{d}{dt}\right|_{t=0}1=0=\operatorname{trace}\left(a_{ij}\right)
$$

Of course, you can choose your own charts (providing the coordinate system), curves (providing the tangent vectors at ##x=I##), and calculate the entire Taylor series, but the Cartesian charts, coordinate functions ##t\mapsto (x_{ij}(t))##, and the first derivative ##\left(\left. \dfrac{d}{dt}\right|_{t=0}x_{ij}(t)\right)## are likely the easiest you can get. The crucial condition is ##\gamma(t)\in M## with ##\gamma(0)=I.##
Thanks. Can you please give more deatils of how to do the calculations with taylor series expansion?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
540
  • · Replies 73 ·
3
Replies
73
Views
7K