Undergrad About writing a unitary matrix in another way

Click For Summary
A unitary matrix satisfies the condition AA^* = I, with a determinant of 1. The discussion explores how to express a general 2x2 matrix in this form and the necessary conditions for its elements. Imposing the unitary condition leads to specific relationships among the matrix's components, such as e = -c and f = d. The possibility of finding the inverse of the matrix and using the Hermitian property to derive these relationships is also mentioned. Overall, the conversation focuses on the mathematical derivation of the properties of unitary matrices.
aalma
Messages
46
Reaction score
1
It is easy to see that a matrix of the given form is actually an unitary matrix i,e, satisfying AA^*=I with determinant 1. But, how to see that an unitary matrix can be represented in the given way?
20230322_224305.jpg
 
Last edited by a moderator:
Physics news on Phys.org
Take the most general matrix,
$$
A =
\begin{bmatrix}
a + bi & c + di \\
e+ fi & g+hi
\end{bmatrix}
$$
and show that imposing ##AA^\dagger = I## requires ##e = -c##, ##f=d##, and so on.
 
  • Like
Likes aalma and topsquark
Yes, thanks. Tried to do this however got somehow long equations with these eight real numbers. guessing how it should be solved!
I also wrote the condition that the det of this matrix=1.
 
Can't you just find the inverse of the matrix using the standard formula, and then you do the hermitian of the matrix and thus figure out what the relationsships of a, b, c, ... must be?

##A^\dagger = A^{-1}##
 
Last edited:
  • Like
Likes aalma and DrClaude
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K