I Absolute meaning of spatial deviaton angle of light around the sun

wnvl2
Messages
62
Reaction score
14
TL;DR Summary
Clarification sought for the absolute meaning of the deviaton angle of light as calculated by Einstein around the sun
Einstein first calculated the bending of light rays that are touching the sun as 1.75 arc-sec. For the calculation I refer e.g. to https://www.mathpages.com/rr/s8-09/8-09.htm

I know that spatial angles in general relativity don’t have an intrinsic value (are not invariant). They are dependent on the choice of the coordinate system. Angles can be calculated using

$$\cos\theta = \frac{a^{i}b_{i}}{\sqrt{a^{i}a_{i}b^{i}b_{i}}}$$

with i indexing only the spatial components.

I would have expected that the outcome is determined by the chosen coordinate system with associated metrics and that his value has no physical meaning if you don't know which coordinate system + associated metric was chosen. But apparently that 1.75 arc sec seems to have some absolute meaning without having to specify the coordinate system. Is there any assumption I am missing?

In this context I would also like to refer to Einstein’s hole argument. By changing the coordinate system in a hole I would expect to obtain a different total deflection angle.
 
Physics news on Phys.org
wnvl2 said:
In this context I would also like to refer to Einstein’s hole argument. By changing the coordinate system in a hole I would expect to obtain a different total deflection angle.
The calculation in the given coordinate system results in a prediction for a local observation on Earth. If you change the coordinate system, you must end up with the same local measurement. For example, if we could find a coordinate system where the light was not deflected, then the worldline of the observer with the telescope on Earth would be more complicated - such that the local measurement would be the same. I.e. the orientation of the telescope on Earth, relative to the Earth's surface, as measured locally, would be the same in order to detect the starlight.

The chosen coordinates merely give the simplest way of calculating the required orientation of the telescope. The deflection angle, although not invariant, is meaningful to observers on Earth using the rest frame of the Sun to analyse the solar system.
 
  • Like
Likes vanhees71 and wnvl2
zon1.gif
zon2.gif

If in both situations (with and without sun) the coordinate system + metric locally at the Earth and the star are the same (Minkowski at Earth and star), then the total deflection of the light between star and Earth calculated by integrating all instantaneous deviations of the light (that is how Einstein does the calculation in the link in my first message) over the full traject between star and earthwill be the same independent of the coordinate system (+ corresponding metric acoording to Ein,stein equations) chosen in between Earth and star.

I mean that for some part of the traject (a hole) I can choose a very exotic coordinate system (+ corresponding metric determined by the Einstein equations) as long as it fits at the boundary, I will find mathematically exactly the same deviation.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top