I AC Stark shift in a 3 level system

  • I
  • Thread starter Thread starter BillKet
  • Start date Start date
Click For Summary
In a three-level system with energy levels E1, E2, and E3, the AC Stark shift affects the resonance frequency when an electric field couples E2 and E3. The derived formula for the AC Stark shift indicates that the energy of level E2 is lowered by an amount proportional to the square of the Rabi frequency (Ω) and inversely related to the energy difference between E3 and E2 (ω). Consequently, the observed resonant frequency shifts to ω0 minus this correction. This analysis is valid to first order in perturbation theory, treating the two pairs of levels independently. The discussion confirms the understanding of the AC Stark shift in this specific system configuration.
BillKet
Messages
311
Reaction score
30
Hello! I want to make sure I got this right. Say we have a 3 level system ordered such that ##E_1<E_2<<E_3## with ##\omega_0 = E_2-E_1##. I use a laser to measure ##\omega_0## (e.g. I scan the laser frequency across the expected location of the resonance and fit that with a Voigt profile, we can ignore any systematic effects of the measurement). If I had just a 2 level system, the center of the peak would be exactly at ##\omega_0##. Now, let's say that the electric field can also couple ##E_2## and ##E_3## (but ##E_1## and ##E_3## can't be coupled in the electric dipole approximation). The formula for the AC Stark shift in this case is given by

$$E_{\mathrm{Stark}} = \frac{\Omega^2\omega}{2(\omega^2-\omega_0^2)}$$

where ##\Omega## is the Rabi frequency of the field between ##E_2## and ##E_3## and ##\omega = E_3-E_2##. In our limit this becomes:

$$E_{\mathrm{Stark}} = \frac{\Omega^2}{2\omega}$$
So the ##E_2## levels gets pushed down (towards the ##E_1##) by this amount. So the resonant frequency in this case will appear to be at:

$$\omega_0-\frac{\Omega^2}{2\omega}$$

Is this right (at least to first order in perturbation theory as the 2 pair of levels are treated independently)? Thank you!
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...

Similar threads