MHB ACT Problem: Finding The x-Intercept Of Given Line

  • Thread starter Thread starter 816318
  • Start date Start date
  • Tags Tags
    Act Line
AI Thread Summary
The x-intercept of the graph of the function y = x² – 4x + 4 is found by setting y to zero and solving the equation x² - 4x + 4 = 0. This can be accomplished using the quadratic formula or by factoring, resulting in the factored form (x - 2)² = 0. The solution indicates a repeated root at x = 2, meaning the graph touches the x-axis at this point without crossing it. Both methods confirm that the x-intercept is at the coordinate (2, 0). The discussion emphasizes the effectiveness of both the quadratic formula and factoring in determining the x-intercept.
816318
Messages
14
Reaction score
0
What is the x-intercept of the graph of y = x2 – 4x + 4?

How would you foil this?
 
Mathematics news on Phys.org
Re: ACT problem

To find the x intercept of the graph of the function $y = x^2 – 4x + 4$

We may either use the completing the square method or we may use the formula $x=\frac{-b}{2a}$

The easiest way is to use $x=\frac{-b}{2a}$

From $y = x^2 – 4x + 4$ which is in the form of $ax^2+bx+c$ we can find the values for $b$ and $a$ as $b=-4$ & $a=1$

$-b$ in the formula stands for the opposite of the value of $b$ in the above form.

$x=\frac{-(-4)}{2*1}$
$x=\frac{4}{2}$
$x=2$

using complete the square method to form the graph of the function of the form $y=\pm(x+b)^2+c$ or the vertex form

$y= (x^2 – 4x+(\frac{b}{2})^2 ) + 4 - (\frac{b}{2})^2 ) $
$ y=(x^2 – 4x+(\frac{-4}{2})^2 ) + 4 - (\frac{-4}{2})^2 ) $
$ y=(x^2 – 4x+4 ) + 4 - 4 $
$y=(x-2)^2$

which now the x means -b which is 2.

Now it can be seen using Desmos one $x$ intercept of both the forms is $(2,0)$

[graph]gf10si3evs[/graph]
 
Last edited:
Re: ACT problem

816318 said:
What is the x-intercept of the graph of y = x2 – 4x + 4?

How would you foil this?

To find the $x$-intercept, we can set $y=0$ and solve for $x$:

$$x^2-4x+4=0$$

To factor, we need to look for two factors of 4 whose sum is -4, and we find:

$$(-2)(-2)=4$$

$$(-2)+(-2)=-4$$

Thus, the factored form is:

$$(x-2)(x-2)=0$$

or:

$$(x-2)^2=0$$

We have a repeated root, of multiplicity 2. Since the multiplicity is even, we know the graph will touch the $x$-axis without passing through it. Equating this factor to zero, we find:

$$x-2=0$$

$$x=2$$

Thus, we know the given graph has one $x$-intercept at $(2,0)$.
 
Re: ACT problem

$$x^2-4x+4=x^2-2x-2x+4=x(x-2)-2(x-2)=(x-2)(x-2)=0\implies x=2$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top