MHB ACT Problem: Finding The x-Intercept Of Given Line

  • Thread starter Thread starter 816318
  • Start date Start date
  • Tags Tags
    Act Line
Click For Summary
The x-intercept of the graph of the function y = x² – 4x + 4 is found by setting y to zero and solving the equation x² - 4x + 4 = 0. This can be accomplished using the quadratic formula or by factoring, resulting in the factored form (x - 2)² = 0. The solution indicates a repeated root at x = 2, meaning the graph touches the x-axis at this point without crossing it. Both methods confirm that the x-intercept is at the coordinate (2, 0). The discussion emphasizes the effectiveness of both the quadratic formula and factoring in determining the x-intercept.
816318
Messages
14
Reaction score
0
What is the x-intercept of the graph of y = x2 – 4x + 4?

How would you foil this?
 
Mathematics news on Phys.org
Re: ACT problem

To find the x intercept of the graph of the function $y = x^2 – 4x + 4$

We may either use the completing the square method or we may use the formula $x=\frac{-b}{2a}$

The easiest way is to use $x=\frac{-b}{2a}$

From $y = x^2 – 4x + 4$ which is in the form of $ax^2+bx+c$ we can find the values for $b$ and $a$ as $b=-4$ & $a=1$

$-b$ in the formula stands for the opposite of the value of $b$ in the above form.

$x=\frac{-(-4)}{2*1}$
$x=\frac{4}{2}$
$x=2$

using complete the square method to form the graph of the function of the form $y=\pm(x+b)^2+c$ or the vertex form

$y= (x^2 – 4x+(\frac{b}{2})^2 ) + 4 - (\frac{b}{2})^2 ) $
$ y=(x^2 – 4x+(\frac{-4}{2})^2 ) + 4 - (\frac{-4}{2})^2 ) $
$ y=(x^2 – 4x+4 ) + 4 - 4 $
$y=(x-2)^2$

which now the x means -b which is 2.

Now it can be seen using Desmos one $x$ intercept of both the forms is $(2,0)$

[graph]gf10si3evs[/graph]
 
Last edited:
Re: ACT problem

816318 said:
What is the x-intercept of the graph of y = x2 – 4x + 4?

How would you foil this?

To find the $x$-intercept, we can set $y=0$ and solve for $x$:

$$x^2-4x+4=0$$

To factor, we need to look for two factors of 4 whose sum is -4, and we find:

$$(-2)(-2)=4$$

$$(-2)+(-2)=-4$$

Thus, the factored form is:

$$(x-2)(x-2)=0$$

or:

$$(x-2)^2=0$$

We have a repeated root, of multiplicity 2. Since the multiplicity is even, we know the graph will touch the $x$-axis without passing through it. Equating this factor to zero, we find:

$$x-2=0$$

$$x=2$$

Thus, we know the given graph has one $x$-intercept at $(2,0)$.
 
Re: ACT problem

$$x^2-4x+4=x^2-2x-2x+4=x(x-2)-2(x-2)=(x-2)(x-2)=0\implies x=2$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
10
Views
3K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K