I don't really understand the properties for adding/multiplying dedekind cuts. I get that they're closed, commutative and associative because that follows from the rational numbers (and the cut just partitions a rational number into 2 classes of rationals, plus the "cut" that only contains one number), but the other properties are confusing.(adsbygoogle = window.adsbygoogle || []).push({});

First, I'm not really clear on how to add/multiply cuts- which happens due to them containing only rationals. I thought you take the limit of cuts (which converge to a precise limit) and this limit is the precise number that you are able to add/multiply, but it is not an actual pinpointed number and just a limit, yet limits behave just like numbers. But then I have trouble tying all of this together.

EDIT: Okay I think I'm mixing up two ways of constructing the real numbers.

For the identity property for addition, 0* can be chosen as all the negative rational. Say p is a point in a dedekind cut A, and q is another point such that p < q. Then p = q + [-(q-p)], where -(q-p) is a point in 0*. Thus A [itex]\subset[/itex] A + 0*, and A + 0* [itex]\subset[/itex] A due to the property of dedekind cuts to be closed downward. This makes A + 0* = A, or am i misunderstanding a concept?

The inverse is really hard for me to imagine. A + B = 0*, so B is supposed to be a cut that gives a cut of all the negative rationals?

Multiplication seems to be similar to addition, but the cases are divided into positive and negative. 1* should be part of the identity property.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Addition/Multiplication for Dedekind cuts?

**Physics Forums | Science Articles, Homework Help, Discussion**