Aircraft structure (thin walled closed section beam)

Click For Summary
SUMMARY

The discussion focuses on calculating the position of the shear center S for a thin-walled closed section beam in aircraft structures. The shear center is determined to be 197.2 mm from the vertical line through booms B2 and B3. Key calculations involve applying an arbitrary shear load and utilizing shear flow distribution equations from "Aircraft Structures" by T.H.G. Megson. The internal shear flow distribution and moments about point O are critical to solving the problem.

PREREQUISITES
  • Understanding of shear center concepts in structural engineering
  • Familiarity with thin-walled beam theory
  • Knowledge of shear flow distribution equations
  • Proficiency in calculating moments and internal forces
NEXT STEPS
  • Study shear flow distribution using equations from "Aircraft Structures" by T.H.G. Megson
  • Learn about the application of the basic theory of bending in thin-walled beams
  • Explore the calculation of moments in structural analysis
  • Investigate the significance of the shear center in aircraft design
USEFUL FOR

Aerospace engineers, structural analysts, and students studying aircraft design will benefit from this discussion, particularly those focusing on thin-walled structures and shear center calculations.

sohaib
Messages
6
Reaction score
0
Figure shows the cross section of a single cell, thin walled
beam with the horizontal axis of symmetry. The direct stresses are carried
by the booms B1 to B4, while the walls are effective only in carrying shear
stresses. Assuming that the basic theory of bending is applicable, calculate
the position of the shear center S. The shear modulus G is the same for all walls.

Cell Area = 135000 mm^2
Boom Areas B1 = B4 = 450 mm^2, B2 = B3 = 550 mm^2

Wall Length(mm) Thickness(mm)
12,34 500 0.8
23 580 1.0
41 200 1.2

Ans: 197.2 mm from vertical through booms 2 and 3.
 

Attachments

  • 1.JPG
    1.JPG
    13.7 KB · Views: 1,228
Engineering news on Phys.org
And so far you have done... ? If you know how to solve one of these you know how to solve them all as I remember.
 
i was looking for the approach i should take to solve the problem... iam not here to find out the entire solution because i know u (aero stud) can't solve it anyway...
 
LOL are you studying engineering or psychology ? lol
Those are the rules - what's the point of just telling you the answer, the shear centre is where the moment is zero so use that for every section and it's moment and you can find it. I studied this stuff a year ago, I think maybe a tiny bit did sink in... lol You could at least google it, you lazy shrink... :wink:
 
U are the most lazy person i know in this world and have so much
free time that u are writing such big replies rather than answering the question. So sick and so pathetic...

Anywayz, i have figure out the answer myself of my question no thanks to u... Anywayz, iam off to solving the next question...
lolz... ;)
 
I recently asked the above mentioned question on this forum...

I have figured out the answer myself to this question... So iam posting the way to solve this problem so it might be helpful to anyone who is having trouble solving it...

First of all see that the shear center S lies on the horizontal axis of symmetry, the x axis. Therefore what we have to do is to apply an arbitrary shear load Sy through S. The internal shear flow distribution is given by eq. 9.80 (aircraft structure, thg megson). and since we have
Ixy = 0
Sx =0
and tD=0
Calculate Ixx.
Calculate qb23, qb34, qb41

note that qb23 = 0
The value of the shear flow at the cut is obtained by using eq. 9.47 .
Calculate qs,0

Now take moments about O we have,
SyEs = 2x0.61x10^-3Syx500x100 + 2.86x10^-3Syx200x500

Solve this, we have
Es = 197.2 mm
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
3K