Alternative theories being tested by Gravity probe B

AI Thread Summary
The Gravity Probe B satellite is testing two predictions of General Relativity: the N-S geodetic precession and the E-W frame-dragging effect. Several alternative theories, including Self Creation Cosmology and Moffat's Nonsymmetric Gravitational Theory, are also being evaluated against these predictions. The GP-B mission is currently in the data analysis phase, with results expected to be published soon, which could challenge or confirm General Relativity. The experiment aims to provide precise measurements that could distinguish between these theories, despite some skepticism regarding the necessity of the experiment given the strong support for General Relativity. Overall, the outcomes of GP-B could significantly impact our understanding of gravitational theories.
Garth
Science Advisor
Gold Member
Messages
3,580
Reaction score
107
The Gravity Probe B satellite has placed four (over redundant) gyroscopes in low polar Earth orbit to primarily test two predictions of General Relativity.

The first effect being tested is (for the GP-B polar orbit) a N-S geodetic precession, caused by the amount a gyro 'leans' over into the slope of curved space.

The second effect being tested is the E-W frame-dragging, Lense-Thirring, or gravitomagnetic effect, caused by the spinning Earth dragging space-time around with it.

Some researchers, such as Kenneth Nordtvedt, have said that the experiment was worth doing when it was first proposed but that now GR has been verified beyond resonable doubt the result of GP-B is a foregone conclusion.

I have now discovered several theories competing with General Relativity(GR) that are being tested and falsified by this experiment:
my Self Creation Cosmology).(SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's mass variance SR theory (MVSR),
Stanley Robertson's Newtonian Gravity theory (NG), and
Junhao & Xiang's Flat space-time theory (FST).

As the results will be published in the not too distant future they could be interesting!

(Note if anybody knows of any other theories with alternative predictions for GP-B please post them as well for comparison.)

1. GPB Geodetic precession
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr


2. GPB gravitomagnetic frame dragging precession
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr


I cannot vouch for these other theories, they may well be considered 'crackpot' by some, however all these theories have the advantage, together with GR, that they are able to be falsified by the GP-B results.

We continue to wait and see! :smile:

Garth
 
Last edited:
Astronomy news on Phys.org
The wait for the results continues into this and next new year! GP-B MISSION NEWS—NASA REPORT & DATA ANALYSIS PROCEEDING AS PLANNED
It is important to emphasize that at this point in the mission, we are only performing maintenance operations on the spacecraft . Our main focus is analyzing the science data we have collected and finishing our final report to NASA. In this regard, our final report to NASA, which is over 450 pages long, is now in the final stages of completion. Our science data analysis is proceeding according to plan. We are in the process of analyzing approximately 1 terabyte (1,000 gigabytes) of data collected from the spacecraft . Two independent analysis teams here at GP-B are working on the data, frequently comparing their results for both quality control and to ensure the validity of the data analysis algorithms.

The main part of the data analysis is expected to be completed late this summer (July-August 2006). At this point, the Harvard-Smithsonian Center for Astrophysics (CfA) will provide our science team with their ultra-precise measurements of the proper motion of the guide star, IM Pegasi. In the final step of the analysis, our science team will combine the gyroscope results with the CfA proper motion measurements of IM Pegasi to arrive at the final experimental results. These results will then be carefully and critically reviewed by international experts in general relativity and data analysis to ensure that our statement of the effects observed are as accurate as possible. Only after this review is complete--early in 2007--will we make a formal and public announcement about the results of this unprecedented test of General Relativity.
Whatever those results might be!

Garth
 
To what extent will the parameter space that GPB and observations of the double pulsar (will) probe overlap, in terms of testing GR and alternatives?
 
The recent pulsar measurements are probably better predictors than GPB could ever hope to be. My prediction: GR will prevail again.
 
Chronos said:
The recent pulsar measurements are probably better predictors than GPB could ever hope to be. My prediction: GR will prevail again.

This is in line with the thinking of Kenneth Nordtvedt in which case the $700 million spent on GP-B has been wasted! However, I beg to differ.

GP-B is a controlled experiment, all the parameters that may affect the result are well determined. This cannot be said for a remote observation of a distant pulsar system.

As far as experimental/observational comparisons between SCC and GR, especially concerning the binary pulsar PSR B1913+16 (and now the double pulsar PSR J0737-3039B), there are two degeneracies and a third near degeneracy to realize.

1. SCC is conformally equivalent to canonical GR in vacuo, in a vacuum - the Schwarzschild solution - particles and photons follow the geodesics/null geodesics of GR. As all the standard tests of GR, light deflection, precession of the perihelia, time delay, test the behaviour of particles and photons through a vacuum there is no difference between these two theories in predicting the results of these tests.

(The details of the conformal transformation can be found here: The Principles of Self Creation Cosmology and its Comparison with General Relativity Section 2, especially Equation 20.)

and the details of the degeneracy of tests can be found here: Resolving the Degeneracy: Experimental tests of the New Self Creation Cosmology and a heterodox prediction for Gravity Probe B)

2. As matter becomes degenerate
p -> \frac 13 \rho c^2
the scalar field becomes minimally connected and again the behaviour, even when not in vacuo reduces to canonical GR; although now the full gravitational 'constant' is felt.
G_m = \frac 43 G_{Newton}


Because of these two degeneracies the behaviour of a binary or double pulsar system in SCC is exactly the same as in GR.

3. The third near degeneracy is in tests of the equivalence principle in Eotvos type experiments the violation of the EEP would be about one part in 10−17 or about three orders of magnitude smaller than the present day sensitivity of the experiment. (See Self Creation Cosmology - An Alternative Gravitational Theory section 7.

These degeneracies will be resolved by GP-B, which is the first experiment/observation that is able to distinguish between these two theories.

Note that degeneracy 1 does not apply to the cosmological solution, except in the empty universe, \rho = 0 case. (When SCC converges on the GR Milne model) That is why the SCC cosmological solution is different to that of GR, it is concordant with cosmological observations but without inflation, exotic DM or unknown DE!

Garth
 
Last edited:
Garth
Can you help me understand the Gravity B tests here? I’m having trouble understanding the expected direction of change in angles expected.

First as I read the polar orbit of GPB it is moving north to south as it is viewing IM-Pegasi the guide star being used. (In close alignment with it the guide star would always be blocked by Earth during the south to north trip)

First:
GPB gravitomagnetic frame dragging precession.
The most significant measurement to be made (at least some say and IMO). It is the annual change in the orbital alignment with the guide star.
Do I read the term “E-W precession” correctly as relating the alignment moving in the direction of the rotation of Earth (as there is no orbital E-W component to precess)? Thus all the theories named here are predicting the orbit to move its alignment to the east of the guide star. Is this correct?

Actually, I would expect the alignment to move west, so I was looking for a theory that agrees with a westward change. I take it then you are not aware of any theory that does.

Second:
GPB Geodetic precession
Looking at the Satellite on the IM-Pegis side of the orbit at the equator. The angle of deflection relates to the alignment of the gyro axis moving. Given three idea gyros at this point in the orbit and axis aligned; 1) E-W, 2) N-S, 3) Earth Radius, which of the three would have their alignment move and which way?
I assume one will not move at all.
Would direction of gyro rotation have any effect on direction?
And do you know a website that does a good job of explaining why GR expects this beyond just saying “because of GR space-time curvature”.

Thanks
RB
 
Congratulations Garth, i think.
 
RandallB The orbit was chosen to be a polar orbit precisely to searate out the two effects: geodetic and frame-dragging.

The frame-dragging, or Lense-Thirring, or gravitomagnetic, effect is as the name suggests caused by space-time, and corresponding frames of reference, being dragged round by the revolving Earth in a West to East direction.

The geodetic effect, caused by the curvature of space-time, represents the angle missing from 3600 in the circle drawn on a curved surface, or the amount the gyro axis precesses after being parallel transported one complete orbital revolution - summed up over a year's worth of orbits. Alternatively you can think of it as the angle the gyro 'leans over into the slope' of curvature and is in the direction of motion. Therefore it is a precession in the N-S direction and clearly distinguished from the much smaller frame-dragging precession.

Note: the orbit was accurate to within 10 to secure this distinction, and that gave the launch vehicle a one second window on each day of possible launch(!)

I hope this helps.

wolfram thank you, but a little premature I think? :wink:

Garth
 
Last edited:
Garth said:
The frame-dragging, - - frames of reference, being dragged round by the revolving Earth in a West to East direction.
OK that as I expected, the alignment of the entire orbit towards IM-Pegasi is predicted to move to the East. (Or looking at the orbital axis from the guide star view, the left side would lean towards the star)

The geodetic effect, - - Therefore it is a precession in the N-S direction and clearly distinguished from the much smaller frame-dragging precession.
Now this is the one I have the most trouble understanding alignment and direction on. What is “precession in the N-S direction” of a gyro axis?

In terms of the angle the gyro axis “leans over” - which of the three idea gyros I described would actually show a change.
At equator the position I described, (Pegasi side GPB moving north to south) two are perpendicular to a radius from Earth thus axis ends are pointing E-W & N-S. Which if any of these ends would lean towards earth?

The third axis would be inline with a radius from earth. So for the end pointed toward Earth (only on this side) which way would it move N, S, E, or W if at all?

Thanks
RB
 
  • #10
RB - my 'leaning' over explanation is only a 'hand waving' description to try and convey some understanding to what is going on, a full understanding requires the maths.

The precession of a spin S is given by

\frac{dS}{d\tau} = \Omega \times S

where

\Omega = -\frac 12 v \times a -\frac 12 \nabla \times g + (\gamma + \frac 12)v \times \nabla U
(see MHW equation 40.33 page 1118)

In the RHS of the last expression the first term is the SR Thomas precession caused by accelerating a vector - it 'leans over' in 4D space-time. It is zero in GR but not http://en.wikipedia.org/wiki/Self_creation_cosmology .

The second term is the Lense-Thirring effect g = g_{0j}e_j is the perturbation of the metric caused by the spinning of the Earth.

The third term is the geodetic effect. v is the along spin axis of the satellite's orbit, normal to its plane.

When you work it out for a polar orbit the geodetic precession is in a
N-S direction.

Garth
 
Last edited by a moderator:
  • #11
Garth said:
When you work it out for a polar orbit the geodetic precession is in a N-S direction.
This is the part that isn’t clear in anything I’ve been able to find. At the end of the day the GPB will be making a measurement on the gyros that have been running for however long and expect them to have have moved from their normal alignments. What will those physical changes in the direct measurements be?

As in my example of three gyros with their spins around x, y, and z coordinates after running a long time, classical Newtonian expectations would say that there would be absolutely no change at all (as if the Earth was not rotating). The axis end pointed toward the Earth center (while over the equator, the opposite end of the axis would always point at the guide star) would not tip N, S, E, or W at all. The 4 ends of the other axis point N, S, E, & W and no end should tip towards the Earth (thus away from the guide star).

None of the six theories predict such a null result. But all predict various amounts of change in the same direction. What is not clear is what direction of tilt will be physically observed by the measurements to be made on GPB. Someone on the team must have defined in clear measurable terms exactly what direction that is to match a “geodetic precession is in a N-S direction”.
 
  • #12
RandallB said:
This is the part that isn’t clear in anything I’ve been able to find. At the end of the day the GPB will be making a measurement on the gyros that have been running for however long and expect them to have have moved from their normal alignments. What will those physical changes in the direct measurements be?
Read the information on the GP-B website. The gyros are aligned on a star, the IM Pegasi (radio) star has a proper motion that is being tracked by VLBI, the movement of the gryos relative to the star has been tracked using SQUIDs (see the website for details) by the summer this year the one data set will be compared to the other to see how the gyros have moved, various theories predict different N-S and E-W precessions and of course almost everybody expects the experiment will verify the GR prediction, but the team have kept a very open mind on this, which is what makes the experiment so exciting.
As in my example of three gyros with their spins around x, y, and z coordinates after running a long time, classical Newtonian expectations would say that there would be absolutely no change at all (as if the Earth was not rotating). The axis end pointed toward the Earth center (while over the equator, the opposite end of the axis would always point at the guide star) would not tip N, S, E, or W at all. The 4 ends of the other axis point N, S, E, & W and no end should tip towards the Earth (thus away from the guide star).

None of the six theories predict such a null result. But all predict various amounts of change in the same direction. What is not clear is what direction of tilt will be physically observed by the measurements to be made on GPB. Someone on the team must have defined in clear measurable terms exactly what direction that is to match a “geodetic precession is in a N-S direction”.
I'm not sure what your problem is. The gyros may not move at all, or they may move in a direction that can be resolved into a N-S and a E-W component, and then we shall see whether these observed precessions match any of the sets of predictions.

Garth
 
Last edited:
  • #13
Garth said:
I'm not sure what your problem is.
In space how do you define up down left right forward and back with no references.
Same thing here, I don’t see a defined reference.

For the gyro that is pointed at the guide star.
Option 1:
The axis end pointed at the star tips up to the North the back end will of course tip down to the south.
Option 2:
The opposite happens, the end axis pointed at the star tips down to the South the back end will of course tip up to the North.

Which option is the N-S move Option 1 or 2?
We can assume N-S means “from North towards the South” movement.
But without defining which end of the gyro is being measured how does anyone know what the other is talking about.

Same kind of problem understanding the other gyro measements in 3D.
 
  • #14
RandallB said:
In space how do you define up down left right forward and back with no references.
Same thing here, I don’t see a defined reference.
From the plane of the satellite's orbit (N-S) and the orientation of the Earth(E-W).
For the gyro that is pointed at the guide star.
Option 1:
The axis end pointed at the star tips up to the North the back end will of course tip down to the south.
Option 2:
The opposite happens, the end axis pointed at the star tips down to the South the back end will of course tip up to the North.

Which option is the N-S move Option 1 or 2?
We can assume N-S means “from North towards the South” movement.
But without defining which end of the gyro is being measured how does anyone know what the other is talking about.

Same kind of problem understanding the other gyro measements in 3D.
The Spin vector of the gyro is defined by the Right Hand Screw convention, so long as that convention (or the opposite one) is applied consistently in the analysis there is no ambiguity.

Garth
 
  • #15
Garth said:
The Spin vector of the gyro is defined by the Right Hand Screw
So the direction of gyro rotation makes a differance.
With that Right hand vector pointed at the guide star does that mean option 2 is matchs with a positive N-S move.
And option 1 if the if the vector is away from the guide star?
 
  • #16
As I said it depends on the convention used.

You have to examine the GP-B papers to find the answers to your questions, or simply ask the question on their website.

Garth
 
  • #17
Latest news of the GP-B data analysis: Phase I complete!
We are now entering Phase II of the data analysis, which will last 4-5 months. During this phase, the team will analyze the data on a month-to-month basis, in order to identify, model, and remove systematic errors that span many days or months, including effects resulting from spacecraft anomalies. Phase II will culminate in another meeting of the SAC committee in mid to late August. At that point, the team will begin Phase III of the analysis, during which additional systematic effects will be removed and the results from all four gyros will be combined. This final phase of the data analysis is expected to be completed towards the end of this year.

A preliminary plan was laid out for a much more extended SAC review process in the Dec 2006-Jan 2007 time frame, which would include a careful and critical review of the complete analysis and results. It is expected that other international experts will participate in the review process. There was some discussion in SAC #14 about the optimum and most objective method of incorporating a blind or double-blind test of the final results, including incorporation of the Harvard-Smithsonian Center for Astrophysics/York University measurements of guide star proper motion. Decisions on these and other end-around tests will be developed with NASA and the SAC as the process moves forward.

Throughout phases II and III, members of our team will also be preparing a number of scientific and engineering papers for publication, and we will also be working with NASA in planning a formal public announcement of the results of this unprecedented test of General Relativity. We currently anticipate announcing the results at a special session during the American Physical Society (APS) meeting in April 2007.

Another 13 months! :rolleyes:

Garth
 
Last edited:
  • #18
Indeed, Garth. Let the data speak for itself. I do not lean either way, and I am certain you feel the same way. It will be difficult to sieve through the data . . . I hope you will be critical of that process.
 
Last edited:
  • #19
Has anyone done a parameterized post-Newtonian analysis? Can one express the expected results in terms of the usual Eddington alpha, beta gamma and higher order parameters? Any refs?

Jim
 
  • #20
I should have googled first. Apparently it tests gamma and alpha-one ( a non-conservative parameter), according to Will.
No doubt that is why Nordstrom thinks the money has been wasted, as gamma has already been strongly constrained and most people believe in the conservation laws.

Jim
 
  • #21
jgraber said:
I should have googled first. Apparently it tests gamma and alpha-one ( a non-conservative parameter), according to Will.
No doubt that is why Nordstrom thinks the money has been wasted, as gamma has already been strongly constrained and most people believe in the conservation laws.

Jim
You'll find quite an exchange on the use of the word(s) "believe" (actually belief) in the https://www.physicsforums.com/showthread.php?t=1128208 thread! :smile:

The fact that other viable alternative gravitational/cosmological theories are also being tested by GP-B, such as V[/URL], makes the enterprise worthwhile.

This is especially so in the light of persistent problems with the standard model, even if we gloss over the fact that the Higgs boson/inflaton, the DM particle and DE have not been identified in the laboratory.

A recent paper examines a link between DM and baryonic matter [url=http://arxiv.org/abs/astro-ph/0603064]Cold Dark Matter as Compact Composite Objects[/url] [quote]Some of the observations that may be in conflict with the standard viewpoint are:
• The density profile is too cuspy, [4], [5], [6]. The disagreement of the observations with high resolution simulations is alleviated with time, but some questions still remain [5], [6].
• The number of dwarf galaxies in the Local group is smaller than predicted by CCDM simulations, [4], [5], [6]. This problem is also becoming less dramatic with time [5], [6].
• CCDM simulations produce galaxy disks that are too small and have too little angular momentum, [4], [5], [6];
• There is a close relation between rotation curve shape and light distribution. This implies that there is a close coupling between luminous and dark matter which is difficult to interpret, see e.g. [7];
• There is a correlation in early-type galaxies supporting the hypothesis that there is a connection between the DM content and the evolution of the baryonic component in such systems, see e.g.[8];
• The order parameter (either the central density or the core radius) correlates with the stellar mass in spirals[9]. This suggests the existence of a well-defined scale length in dark matter haloes, linked to the luminous
matter, which is totally unexpected in the framework of CDM theory, but could be a natural consequence of DM and baryon interaction.
• There is a mysterious correlation between visible and DM distributions on log−log scale, which is very difficult to explain within the standard CCDM model [10];
• A recent analysis of the CHANDRA image of the galactic center finds that the intensity of the diffuse X-ray emission significantly exceeds the predictions of a model which includes known Galactic sources [11]. The
spectrum is consistent with hot 8 KeV spatially uniform plasma. The hard X-rays are unlikely to result from undetected point sources, because no known population of stellar objects is numerous enough to account for the observed surface brightness.[/quote]

It also seems that an [url=https://www.physicsforums.com/showthread.php?t=94479]Age Problem[/url] is raising its head again as observations of old evolved objects are being made at z > 4.

All the more reason to keep an open mind and continue to confirm our "beliefs" with experimental verification.

We live in interesting times!

Garth
 
Last edited by a moderator:
  • #22
jgraber said:
Has anyone done a parameterized post-Newtonian analysis? Can one express the expected results in terms of the usual Eddington alpha, beta gamma and higher order parameters? Any refs?

Jim
Try Will's: The Confrontation between General Relativity and Experiment or my: Resolving the Degeneracy: Experimental tests of the New Self Creation Cosmology and a heterodox prediction for Gravity Probe B for an alternative model.

They both use the parameterized post-Newtonian (PPN) analysis.

Garth
 
Last edited:
  • #23
Halfway through Phase II!

The latest release from the Gravity Probe B website.
GP-B DATA ANALYSIS & RESULTS ANNOUNCEMENT STATUS
During the 50-week science phase of the GP-B mission and the 7-week instrument calibration phase, which lasted from August 2004 - Septermber 2005, we collected over a terabyte of experimental data. Analysis has been progressing through a 3-phase plan, each subsequent phase building on those preceding it.

In Phase I, which lasted from the end of September 2005 through February 2006, the analysis focused on a short term—day-by-day or even orbit-by-orbit—examination of the data. The overall goals of this phase were to optimize the data analysis routines, calibrate out instrumentation effects, and produce initial "gyro spin axis orientation of the day" estimates for each gyro individually. At this stage, the focus was on individual gyro performance; there was no attempt to combine or compare the results of all four gyros, nor was there even an attempt to estimate the gyro drift rates.

We are currently progressing through Phase II of the data analysis process, which began at the beginning of March and is scheduled to run through mid-August 2006. During Phase II, our focus is on understanding and compensating for certain long-term systematic effects in the data that span weeks or months. The primary products of this phase will be monthly spin axis drift estimates for each gyro, as well as refined daily drift estimates. In this phase, the focus remains on individual gyro performance.

In Phase III, which is scheduled to run from late August 2006 through December 2006, data from all four gyros will be integrated over the entire experiment. The results of this phase will be both individual and correlated gyro drift rates covering the entire 50-week experimental period for all four gyros. These results will be relative to the position of our guide star, IM Pegasi, which changed continually throughout the experiment. Thus, the final step in the analysis, currently scheduled to occur in January 2007, will be to combine our gyro drift results with data mapping the proper motion of IM Pegasi relative to the unchanging position of a distant quasar. The proper motion of IM Pegasi has been mapped with unprecedented precision using a technique called Very Long Baseline Interferometry (VLBI) by Irwin Shapiro and his team at the Harvard-Smithsonian Center for Astrophysics (CfA), in collaboration with Norbert Bartel at York University in Toronto and French astronomer Jean-Francois Lestrade.

Playing the role of our own harshest critic, our science team will then perform a careful and thorough final review of the analysis and results, checking and cross-checking each aspect to ensure the soundness of our procedures and the validity of our outcomes. We will then turn the analysis and results over to our GP-B Science Advisory Committee (SAC), that has been closely monitoring our experimental methods, data analysis procedures, and progress for 11 years, to obtain its independent review. In addition, we will seek independent reviews from a number of international experts.

Throughout phases II and III, members of our team will be preparing scientific and engineering papers for publication in late 2006-2007. At the same time, we will be working with NASA to plan a formal public announcement of the results of this unprecedented test of General Relativity. We expect to make this announcement of the results in April 2007.

Less than a year to go and counting!

Garth
 
Last edited:
  • #24
Thanks for the list of off Broadway gravitation theories. Here's another, alternative theorist with a prediction (0.000):

http://www.mass-metricgravity.net/

By the way, I'm working on a flat space gravitation simulator. My original purpose was to show how standard GR differed from the Cambridge gauge gravity version of GR. The Cambridge guys say that their version works on flat space and test particles therefore cross the event horizon in finite coordinate time. Their website is http://www.mrao.cam.ac.uk/~clifford/ .

For reasons having to do with elementary particles, I find the Cambridge theory convincing, and I thought an animation showing the GR particles getting stuck on the event horizon while the Cambridge particles went on through to the singularity would be convincing.

Now so far I've only got the Newtonian gravity running:
http://www.gaugegravity.com/testapplet/SweetGravity.html
but I should get GR running this weekend, and the Cambridge version (which amounts to allowing a non diagonal metric) soon after.

Where this all gets back to this forum is that I would like to include as many gravity theories as possible, and you've listed quite a few. In order for a theory to be used, I have to be able to write the acceleration in terms of position and velocity.

Carl
 
Last edited by a moderator:
  • #25
Another prediction for the gpb, based on mass-metric relativity.

Garth said:
The Gravity Probe B satellite has placed four (over redundant) gyroscopes in low polar Earth orbit to primarily test two predictions of General Relativity.

The first effect being tested is (for the GP-B polar orbit) a N-S geodetic precession, caused by the amount a gyro 'leans' over into the slope of curved space.

The second effect being tested is the E-W frame-dragging, Lense-Thirring, or gravitomagnetic effect, caused by the spinning Earth dragging space-time around with it.

Some researchers, such as Kenneth Nordtvedt, have said that the experiment was worth doing when it was first proposed but that now GR has been verified beyond resonable doubt the result of GP-B is a foregone conclusion.

I have now discovered several theories competing with General Relativity(GR) that are being tested and falsified by this experiment:
my Self Creation Cosmology).(SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's mass variance SR theory (MVSR),
Stanley Robertson's Newtonian Gravity theory (NG), and
Junhao & Xiang's Flat space-time theory (FST).

As the results will be published in the not too distant future they could be interesting!

(Note if anybody knows of any other theories with alternative predictions for GP-B please post them as well for comparison.)

1. GPB Geodetic precession
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr


2. GPB gravitomagnetic frame dragging precession
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr


I cannot vouch for these other theories, they may well be considered 'crackpot' by some, however all these theories have the advantage, together with GR, that they are able to be falsified by the GP-B results.

We continue to wait and see! :smile:

Garth

Mass-metric relativity is a scalar theory of gravity, and is based on the increase of mass with speed and with gravitational potential. Its predictions for the gpb are: geodetic rate -6.56124 arcsec/yr. Note the sign, indicating that the precession is backward instead of forward as in GR. Lense-Thirring rate -.01924 arcsec/yr. Actually, the Lense-Thirring rate is zero but a geodetic perturbation caused by the yearly orbit of Earth about the sun induces a geodetic precession in the opposite direction. Let the experiment decide. A basic paper on mass-metric relativity is the lasl arXiv 0012059 paper, by R.L. Collins.

R.L. Collins
 
  • #26
Professor Collins,

Please allow me to be the first to welcome you to physics forums. Here are links to your three very fascinating papers on gravitation, in the order I think they should be read:


Changing Mass Corrects Newtonian Gravity
Newton's inverse-square law of universal gravitation assumes constant mass. But mass increases with speed and perhaps with gravity. By SR, mass is increased over the rest mass by gamma. Rest mass is here postulated to increase under gravity, by 1/\alpha =1+GM/rc^2. We examine the consequences of introducing this changing mass into Newton's law in flat spacetime. This variable mass affects the metric, relative to an observer away from the influence of gravity, contracting both lengths and times (as measured) by alpha/gamma. The gravitational force, as in orbital calculations, differs from Newton's law by the factor (\gamma/\alpha)^3, and is not quite inverse square. Without adjustable parameters, this accounts fully for the classical tests of GR. The postulated "fifth force" appears at the 10^-9 g level. Gravitationally-influenced space remains Euclidean, but the mass-metric changes make it seem curved when measured.
http://www.arxiv.org/abs/physics/0012059

SN1a Supernova Red Shifts
http://www.arxiv.org/abs/physics/0101033

The shrinking Hubble constant
http://www.arxiv.org/abs/physics/0601013

By the way, I've just got a first cut of a GR simulating program done. I'm not very sure of it, but it seems like it works okay (but I'm not much of a gravity guy):
http://www.gaugegravity.com/testapplet/SweetGravity.html

I've set the initial conditions to illustrate a fairly extreme case of precession. When I get this program running satisfactorily, I will include your equation of motion. I can hardly wait, but ethanol is keeping me busy right now.

Carl
 
Last edited by a moderator:
  • #27
rusty said:
Mass-metric relativity is a scalar theory of gravity, and is based on the increase of mass with speed and with gravitational potential. Its predictions for the gpb are: geodetic rate -6.56124 arcsec/yr. Note the sign, indicating that the precession is backward instead of forward as in GR. Lense-Thirring rate -.01924 arcsec/yr. Actually, the Lense-Thirring rate is zero but a geodetic perturbation caused by the yearly orbit of Earth about the sun induces a geodetic precession in the opposite direction. Let the experiment decide. A basic paper on mass-metric relativity is the lasl arXiv 0012059 paper, by R.L. Collins.

R.L. Collins
Thank you rusty, the line up is now:

Note:
1. The first effect being tested is (for the GP-B polar orbit) a N-S geodetic precession, caused by the amount a gyro 'leans' over into the slope of curved space.

2. The second effect being tested is the E-W frame-dragging, Lense-Thirring, or gravitomagnetic effect, caused by the spinning Earth dragging space-time around with it.

Einstein's General Relativity(GR)
Barber's Self Creation Cosmology).(SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's mass variance SR theory (MVSR),
Stanley Robertson's Newtonian Gravity theory (NG), and
Junhao & Xiang's Flat space-time theory (FST).
R. L. Collin's Mass-metric relativity (MMR)


The predictions are:

1. GPB Geodetic precession
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr
MMR = -6.56124 arcsec/yr


2. GPB gravitomagnetic frame dragging precession
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr
MMR = -0.01924 arcsec/yr


Garth
 
  • #28
rusty said:
Mass-metric relativity is a scalar theory of gravity, and is based on the increase of mass with speed and with gravitational potential. Its predictions for the gpb are: geodetic rate -6.56124 arcsec/yr. Note the sign, indicating that the precession is backward instead of forward as in GR. Lense-Thirring rate -.01924 arcsec/yr. Actually, the Lense-Thirring rate is zero but a geodetic perturbation caused by the yearly orbit of Earth about the sun induces a geodetic precession in the opposite direction. Let the experiment decide. A basic paper on mass-metric relativity is the lasl arXiv 0012059 paper, by R.L. Collins.

R.L. Collins
rusty has MMR been published in a peer reviewed journal?

If not you can publish it here in the Independent Research Forum and we can discuss it.

Garth
 
Last edited:
  • #29
Now into Phase III of the data analysis of Gravity Probe B.
We are now beginning Phase III—the final phase-of the data analysis—which will last until January-February, 2007. Whereas in Phases I and II the focus was on individual gyro performance, during Phase III, the data from all four gyros will be integrated over the entire experiment. The results of this phase will be both individual and correlated changes in gyro spin axis orientation covering the entire 50-week experimental period for all four gyros. These results will be relative to the position of our guide star, IM Pegasi, which changed continually throughout the experiment. Thus, the final step in the analysis, currently scheduled to occur early in the spring of 2007, will be to combine our gyro spin axis orientation results with data mapping the proper motion of IM Pegasi relative to the unchanging position of a distant quasar. The proper motion of IM Pegasi has been mapped with unprecedented precision using a technique called Very Long Baseline Interferometry (VLBI) by Irwin Shapiro and his team at the Harvard-Smithsonian Center for Astrophysics (CfA), in collaboration with Norbert Bartel at York University in Toronto and French astronomer Jean-Francois Lestrade.

At the end of Phase III, playing the role of our own harshest critic, our science team will then perform a careful and thorough final review of the analysis and results, checking and cross-checking each aspect to ensure the soundness of our procedures and the validity of our outcomes. We will then turn the analysis and results over to the SAC, which has been closely monitoring our experimental methods, data analysis procedures, and progress for 11 years, to obtain its independent review. Moreover, we will seek independent reviews from a number of international experts.

In addition to analyzing the data, members of our team are now in the process of preparing scientific and engineering papers for publication in late 2006-2007. We have also begun discussions with NASA to plan a formal public announcement of the results of this unprecedented test of General Relativity. We expect to make this announcement of the results in April 2007.

Still April 2007, and counting!

Garth
 
  • #31
Polhode motion?

Gravity Probe B Update -- December 22, 2006
==============
GP-B MISSION NEWS
==============

A recent story about GP-B in Nature
=========================
The December 21-28 2006 issue of Nature (v. 444, p. 978-979) contains a short news article stating that Nature has learned that "two unanticipated effects are clouding the [GP-B] team's frame-dragging results" and also that "results were expected by last summer but the announcement never came."

The two issues referred to in Nature have been regularly reported to NASA and our GP-B Science Advisory Committee (SAC) and publicly via these status updates. They are: 1) The effect of polhode motion of the gyros on readout calibration (see the polhode story in last month's update, http://einstein.stanford.edu/highlights/hl_polhode_story.html) and 2) misalignment torques observed and calibrated during the post-science instrument calibration phase in August-September 2005 (see the four weekly updates of September 2005, http://einstein.stanford.edu/highlights/hlindexmain.html.In August 2005, a three-phase data analysis plan was devised in order to properly handle these and other issues. As first reported in May 2006, our intent--reached in agreement with NASA--has been to make the first science announcement in April 2007. This is still our plan.

If you want to know more about the Polhode motion see Polhode Behavior in GP-B’s Gyros

Roll on April! :smile:

Garth
 
Last edited by a moderator:
  • #32
Garth said:
The Gravity Probe B satellite has placed four (over redundant) gyroscopes in low polar Earth orbit to primarily test two predictions of General Relativity.

The first effect being tested is (for the GP-B polar orbit) a N-S geodetic precession, caused by the amount a gyro 'leans' over into the slope of curved space.

The second effect being tested is the E-W frame-dragging, Lense-Thirring, or gravitomagnetic effect, caused by the spinning Earth dragging space-time around with it.

Some researchers, such as Kenneth Nordtvedt, have said that the experiment was worth doing when it was first proposed but that now GR has been verified beyond resonable doubt the result of GP-B is a foregone conclusion.

I have now discovered several theories competing with General Relativity(GR) that are being tested and falsified by this experiment:
my Self Creation Cosmology).(SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's mass variance SR theory (MVSR),
Stanley Robertson's Newtonian Gravity theory (NG), and
Junhao & Xiang's Flat space-time theory (FST).

As the results will be published in the not too distant future they could be interesting!

(Note if anybody knows of any other theories with alternative predictions for GP-B please post them as well for comparison.)

1. GPB Geodetic precession
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr


2. GPB gravitomagnetic frame dragging precession
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr


I cannot vouch for these other theories, they may well be considered 'crackpot' by some, however all these theories have the advantage, together with GR, that they are able to be falsified by the GP-B results.

We continue to wait and see! :smile:

Garth

Thanks Garth for this interesting overview. I printed out your table and will look at it again when the Gravity Probe B results are available :rolleyes: .
What is actually the main motivation for inventing alternative theories to GR ?
What are their main "advantages" ?
 
  • #33
notknowing said:
What is actually the main motivation for inventing alternative theories to GR ?
What are their main "advantages" ?
First to 'push the envelope', the concept of scientific truth is that it is a process, one never should believe that the 'final truth' has been found but that the present best theories are always open to experimental testing and theoretical questioning.

Viable alternative theories are important to test the standard theory against, partly to justify and motivate such difficult experiments as Gravity Probe B.

As I said in your quote "Some researchers, such as Kenneth Nordtvedt, have said that the experiment was worth doing when it was first proposed but that now GR has been verified beyond reasonable doubt the result of GP-B is a foregone conclusion." The existence of these other theories argues for a more positive attitude to the experiment.

There are always questions to be asked of the standard theory that other approaches seek to answer. The main questions about the standard \LambdaCDM model IMHO are its necessity to invoke Inflation, exotic non-baryonic DM and DE, while the Higgs Boson/Inflaton the DM particle(s) and DE have not been discovered in laboratory experiments. The existence of the PA and other anomalies are also intriguing.

Different alternative theories have different advantages, but to be viable contenders they must not only predict accurately the outcomes of all the experiments and observations predicted by the standard theory but also have a greater explanatory power by doing so more simply.

Garth
 
Last edited:
  • #34
Dear all,

Just to mention that there is another alternative theory of gravity (mine: gr-qc/0610079) with predictions different from the ones that you have listed.
This is a DArk Gravity theory:

DG predicts:

1) The same geodetic effect as in GR
2) No frame dragging
3) A small (but hopefully within the GP-B accuracy) angular deviation during the year but with a one year period (related to the the speed of Earth about the sun).

regards,

F H-C
 
  • #35
Thank you Frederic henryco and welcome to these Forums! Join the club of those waiting for the GP-B results!

Has your Dark Gravity theory been published in a recognised peer reviewed journal? If so we could discuss it in a separate thread, if not you may want to submit it to the Independent Research Forum for discussion, but read the "Rules for submission" first!

We now have a line up of eight theories competing in the Gravity Probe B stakes, which are:

Einstein's General Relativity(GR)
Barber's Self Creation Cosmology (SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's Mass Variance SR Theory (MVSR),
Stanley Robertson's Newtonian Gravity Theory (NG), and
Junhao & Xiang's Flat Space-Time Theory (FST).
R. L. Collin's Mass-Metric Relativity (MMR) and
F. Henry-Couannier's Dark Gravity Theory (DG).

The predictions are:

1. GPB Geodetic precession (North-South)
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr
MMR = -6.56124 arcsec/yr
DG = 6.6144 arcsec/yr


2. GPB gravitomagnetic frame dragging precession (East-West)
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr
MMR = -0.01924 arcsec/yr
DG = 0.0000 arcsec/yr


There is the question of whether these alternative theories pass all the other tests of GR as detailed in Clifford Will's paper The Confrontation between General Relativity and Experiment.Three months to go, whatever those results may be!


Garth
 
Last edited:
  • #36
Gravity Probe B - Alternative Theory

Hi Garth – New here to the forum but saw your posts and thought I would mention a potential discovery resulting from the GP-B experiment. Please add it to your list.

No, I do not have an alternative gravity theory but I do question the current model of precession and I believe GP-B (with its perfect gyros far above the wobbling earth) is in an ideal position to determine if the precession of the equinox observable (a change in Earth orientation of about 50”p/y) is due to the torque of lunisolar forces acting on the oblate Earth (current theory) or the observable of a solar system in motion (binary theory of precession). If I guess right, the spacecraft will mimic the precession observable even though it is floating free high above a wobbling earth. This is because we believe the precession observable is due to the motion of the sun and solar system curving through space.

I met with the GP-B team at Stanford a few months ago and they listened and were open minded about the possibility that our sun may have an unknown companion star (which is the theoretical cause of the solar system curving through space at 50”p/y). We discussed the polhode issue and they implied they were getting more signals than originally anticipated and it was a big task to try and separate all of the signals into identifiable buckets. But they were careful to keep the integrity of the experiment and remind me that they could not release results until the public announcement. Nonetheless, we spent a fair amount of time discussing companion star scenarios, which I found interesting.

Bottomline, I think they will either report that it will take more time than expected to sift and interpret all the signals, and or, that our solar system is curving through space at a rate that exceeds the expected results from the relativity experiment. I have posted a model (of the results I expect them to find) on my website at the Binary Research Institute:

http://www.binaryresearchinstitute.org/findingit/gravprobeb.shtml

Regardless of the results of the initial GP-B report I think NASA and Stanford are providing almost priceless research. The raw data should prove to be fundamentally helpful to scientists for years to come as we probe the motions of the Earth and solar system on our journey through space. Bravo to Dr. Everitt and team!
 
Last edited by a moderator:
  • #37
Polestar 101, I loved your website. What I would like to see is more detailed explanation of why the usual calculations are incorrect.
 
  • #38
Gp-b

Carl - Your point is well taken. While I do not have any good theory as to why the current model fails we do have pretty good observable evidence that the Earth hardly wobbles at all relative to local objects within the solar system. In other words, our best calculations are that we see about 4"p/y of precession relative to the Moon, Venus and the Persieds (which we are using as local markers) while at the same time we can observe a full 50"p/y of re-orientation relative to the fixed stars and quasars far outside the SS. This tells me there must be a logical explanation to allow the two simultaneous observables but we have not focused on flaws with the current local dynamics model - as of yet.

One simple guess is the Moon tugs on the Earth and this is responsible for the nutation observable (the 18 year Saros cycle signature reflects the known motions of the Moon). But the much longer precessional cycle (which is slowly speeding up) does not reflect any known motion of the Moon. Perhaps the unaccounted for dynamic is the SS motion through space (possibly offsetting the tendency towards local precession). Anyway, there are a lot of issues. We hope to address some of them in a new paper once we have access to the GPB public data.

Until then...you take a crack at it, and if it stands the test of time, I will nominate you for the Galileo Award.

Walter
 
  • #39
Polestar welcome to these Forums and welcome to this thread!

What I do not understand about your theory is the 26,000 year precession has been well known since the Ancient Greeks and caused by the Moon & Sun's attraction on the Earth's equatorial bulge, causing a well understood gyroscopic motion. This is a precession of ~50"/yr.

I cannot believe that the analysis by Newcombe at end of the 19th Century and then Lieske with satellite technology in the 1970's is all totally erroneous.

Are you saying that there is another precession of ~ 50"/yr that has not been modeled? In which case why has it not already been observed by stellar observations?

If the Sun and its retinue were in orbit with a companion star with period 25,800 years the companion star would have been discovered by now. In the 1980's I did some work on 'Nemesis', the possible cause of perturbations of the Oort cloud and a possible ~32Myr periodicity of mass extinctions on Earth. That would have had an orbital period of ~32Myr (SMA ~ 105 AU), and the conclusion was it should have already been seen either optically or in the IRAS data (if a brown dwarf).

I notice on your website that you link to several of your papers, but I do not find any references to them being published in peer reviewed journals. In which case such discussion is not appropriate here. You may wish to submit your ideas to the Independent Research Forum after first reading their submission rules.

Garth
 
Last edited:
  • #40
Precession Observable

Hi Garth – It is not really my theory as others have mentioned it for years. And you’re right the precession of the equinox has been observed for thousands of years, and yes, that is the ~50”p/y observable we are discussing.

It has long been assumed to be the result of strictly local forces acting upon the oblate Earth producing a gyroscopic motion. Traditionally, it has been measured (by VLBI and others) relative to very distant reference points (stars or quasars far outside the SS) because distant points obviously move less than local points. However, in recent studies of the motion of the equinox relative to objects within the SS it turns out the Earth wobbles very little compared to local points of reference (like the Moon). At BRI we have been working to better understand this seeming paradox: an Earth that wobbles ~ 4”p/y relative to objects “inside the SS”, while at the same time showing ~ 50”p/y relative to objects “outside the SS”.

One possibility is that part of the total observable, that we have attributed to local forces, might actually be due to the geometric effect of the SS's angular motion through space. This of course brings up the question of what it could be moving around, and hence several astronomers are examining companion star scenarios. As you aptly noted, one of those is a brown dwarf concept, like Nemesis, but there are other Newtonian scenarios that run from black holes to unknown planet like masses, as well as non-Newtonian scenarios such as MOND, that would raise the far out possibility that it could even be a nearby visible star. Please understand I am not advocating any particular solution on this board, I am just trying to obtain more data at this time to better understand the precession observable.

Can hardly wait until the GPB data is released - so please keep us posted!

Walter
 
  • #41
Walter, what prediction of the East-West and North-South precessions does this theory make?

I still find it difficult to believe that a substantial object with SMA ~ 877 AU would not have already been discovered.

And yes I agree that Francis Everitt and team are doing a marvellous job and roll on April 14th!

Garth
 
  • #42
Garth - No prediction as I do not believe SS motion would affect the GR part of the experiment. It is my understanding that just as the GPB team has to remove the effect of the motion of the spacecraft around the Earth (~5"), and remove the effect of the motion of the Earth around the sun (~20"), so too would they need to remove any signal from the motion of the solar system curving through local space as all of these affect the abberation of light relative to the guidestar. For a graphic see:

http://www.binaryresearchinstitute.org/findingit/gravprobeb.shtml

Your calculation sounds about right for a brown dwarf scenario. And I agree it is doubtful that we would not have seen that type of object by now. Consequetly, if SS motion is confirmed in the ~ 50"p/y range, as the precession data leads me to believe, and we do not find anything in the 500-1000AU range, we need to condsider more exotic scenarios.

Mid April is probably optomistic. My guess is that due to the sheer volume of data (including possible unexpected signals) and the need to better understand and crunch that data, the GPB team will likely need more time. With an experiment this profound we should probably expect the unexpected.

Walter
 
Last edited by a moderator:
  • #43
Latest news on the publication of GP-B results:
Now that the gyro polhode behavior is well understood, we have been able to shift our focus to identifying and addressing some subtle systematic sources of noise and interference that are buried in the data, along with the relativity signals. Identifying and removing as many of these subtle systematic effects as possible is critically important for reducing the margin of error in our final results—especially the frame-dragging result. While we have been making steady progress in these efforts, it has proven to be a slow and painstaking process, and it is now apparent that several more months of data analysis will be required to achieve the lowest possible margin of error.

At the SAC meeting #15 last September, committee members anticipated this situation and recommended that we ask NASA to create a contingency plan, and budget for an extension of the data analysis phase for several months past our scheduled results announcement at the American Physical Society (APS) meeting on 14-17 April 2007 in Jacksonville, FL. To this end, following a meeting with NASA in mid January, NASA has requested a proposal for extending the GP-B data analysis phase through December 2007, and this is in progress.

Consequently, we are now planning a two-phase announcement of the GP-B results. Our first announcement will be made at the April APS meeting, as planned for some time now. (For more information about our presentations at this meeting, see this month's GP-B Mission News story below.) In conjunction with this announcement, NASA is planning a press/media event at NASA Headquarters in Washington DC just prior to the APS meeting. The experimental results in this first announcement will have been presented to and vetted by our Science Advisory Committee during SAC meeting #16, which is scheduled for 23-24 March 2007. These will be preliminary results, representing the lowest margin of error obtainable by that date.

Concurrent with this preliminary results announcement in April, we will be releasing an initial science data set to the National Space Sciences Data Center (NSSDC) at Goddard Space Flight Center in Greenbelt, MD. The remainder of our science data, along with a complete archive of GP-B documents, images, video, and related program information will be released to the NSSDC by the end of May. All GP-B data and information archived at the NSSDC will be publicly available.

Following the APS meeting, our science team is planning to spend several more months removing further systematic sources of noise and interference, with the goal of reducing the margin of error in the result to the lowest possible level. These results will still be relative to the position of our guide star, IM Pegasi, which changed continually throughout the experiment. This proper motion of the guide star has been measured on our behalf by the Harvard-Smithsonian Center for Astrophysics (CfA). Thus, the final step in the analysis will be to combine our gyro spin axis orientation results with data mapping the proper motion of IM Pegasi relative to the unchanging position of a distant quasar.

In late fall, 2007, playing the role of our own harshest critic, our science team will perform a careful and thorough final review of the analysis and results, checking and cross-checking each aspect to ensure the soundness of our procedures and the validity of our outcomes. We will then convene a final SAC meeting to obtain the committee's independent review of the final results. Moreover, we will seek independent reviews from a number of international experts.

We intend to announce the final experimental results of GP-B through a NASA press/media event towards the end of 2007. At that time it is also our intention to have submitted a number of papers on the GP-B results for publication in peer-reviewed scientific and technical journals.
(emphasis mine)
I knew it! :rolleyes:

The April APS meeting:
GP-B will have a strong presence at the American Physical Society (APS) meeting in Jacksonville, Florida, on 14-17 April 2007. During this meeting, we will emphasize three main themes:

* Successful completion of most challenging space-based experiment in NASA's history
* First scientific results from this historic mission
* Public release of Level2 science data (via NSSDC)

Four members of the GP-B team have been invited to speak at the APS meeting, beginning on Saturday morning, April 14th, with GP-B Principal Investigator, Francis Everitt, giving the plenary conference talk, entitled First Results from Gravity Probe B.

In addition, on Saturday afternoon, two papers related to GP-B will be delivered in Session C12: Experimental Tests of Gravity.

* C12.00004: " Lessons Learned from Gravity Probe B for STEP, LISA and other experiments" by GP-B team members Paul Worden and Sasha Buchman
* C12.00005: "Proper Motion of the GP-B Guide Star" by the Harvard-Smithsonian Center for Astrophysics Gp-B guide star tracking team: Irwin Shapiro, Daniel Lebach, Michael Ratner, Norbert Bartel, Ryan Ransom, Michael Bietenholz, Jerusha Lederman, and Jean-Francois Lestrade

On Sunday morning, April 15th, three members of the GP-B team have been invited to give special talks on three aspects of the GP-B program:

* H7.00001: "The Gravity Probe B Science Instrument," by GP-B Co-Principal Investigator, John Turneaure
* H7.00002: "The Development Challenges of Gravity Probe-B—an ongoing partnership between Physics and Engineering" by GP-B Co-Prinipal Investigator, Bradford Parkinson
* H7.00003: "Gravity Probe B Data Analysis Challenges, Insights, and Results" by GP-B Co-Investigator and Chief Scientist, George (Mac) Keiser

Finally, on Sunday afternoon, April 15th, a large part of the GP-B team and associated scientists and engineers will present 22 poster sessions on a host of scientific and technology topics, as listed below.

Session L1: Poster Session II L1.00011: GRAVITATION

* L1.00012: "Radio Imaging of the Gravity Probe B Guide Star IM Pegasi" by Michael Bietenholz, Ryan Ransom, Norbert Bartel, Daniel Lebach, Michael Ratner, Irwin Shapiro, Jean-Francois Lestrade
* L1.00013: "The 'Core' of the Quasar 3C454.3 as the Extragalactic Reference for the Proper Motion of the Gravity Probe B Guide Star" by Norbert Bartel, Ryan Ransom, Michael Bietenholz, Jerusha Lederman, Daniel Lebach, Michael Ratner, Irwin Shapiro, Leonid Petrov
* L1.00014: "Performance of the Gravity Probe B Inertial Reference Telescope" by Suwen Wang, John Goebel, John Lipa John Turneaure
* L1.00015: "Gravity Probe B Timing System and Roll Phase Determination" by Jie Li , Jeffery Kolodziejczak
* L1.00016: "The Gravity Probe B SQUID Readout Detector" by Barry Muhlfelder, Bruce Clarke, Gregory Gutt, James Lockhart, Ming Luo
* L1.00017: "SQUID Control, Temperature Regulation, and Signal Processing Electronics for Gravity Probe B" by James Lockhart, Barry Muhlfelder, Jie Li, Bruce Clarke, Terry McGinnis, Peter Boretsky, Gregory Gutt
* L1.00018: "Gravity Probe B Science Instrument Assembly (SIA)" by Saps Buchman, Barry Muhlfelder, John Turneaure
* L1.00019: "Polhode Motion of the Gravity Probe-B Gyroscopes" by Michael Dolphin, Alex Silbergleit, Michael Salomon, Paul Worden, Daniel DeBra
* L1.00020: "Evidence for Patch Effect Forces on the Gravity Probe B Gyroscopes" by Dale Gill, Saps Buchman
* L1.00021: "Gravity Probe B Orbit Determination" by Paul Shestople , Huntington Small
* L1.00022: "Simulator Technology of the Gravity Probe-B Mission" by David Hipkins , Robert Brumley , Yoshimi Ohshima , Thomas Holmes
* L1.00023: "Achievement of the Magnetic Environment Requirements for Gravity Probe B" by John Mester, James Lockhart, Michael Taber
* L1.00024: "The Gravity Probe B Gyroscopes" by Saps Buchman, Bruce Clarke, Mac Keiser, Dale Gill, Frane Marcelja, Robert Brumley
* L1.00025: "Gravity Probe B Gyroscope Electrostatic Suspension System (GSS)" by William Bencze, David Hipkins, Tom Holmes, Saps Buchman, Robert Brumley
* L1.00026: "The Gravity Probe B Relativity Mission (GP-B)" by C.W. Francis Everitt
* L1.00027: "Gravity Probe B Experiment Error" by Barry Muhlfelder, G. Mac Keiser, John Turneaure
* L1.00028: "Gravity Probe B Science Data Analysis: Filtering Strategy" by Michael Heifetz, Thomas Holmes, David Hipkins, Alex Silbergleit, Vladimir Solomonik
* L1.00029: "Performance of the Gravity Probe B Cryogenic Sub-System" by Michael Taber, David Murray
* L1.00030: "The Gravity Probe B Drag-free and Attitude Control System" by Michael Adams, Daniel DeBra
* L1.00031: "Features of the Gravity Probe B Space Vehicle" by William Reeve, Gaylord Green
* L1.00032: "Classical Torques on Gravity Probe B Gyroscopes" by Alex Silbergleit, G. Mac Keiser, Yoshimi Ohshima
* L1.00033: "Trapped Flux Mapping for the Gravity Probe B Gyroscopes" by Michael Salomon, John Conklin, Michael Dolphin, G. Mac Keiser, Alex Silbergleit, Paul Worden

Patiently waiting!

Garth
 
  • #44
Garth said:
Patiently waiting!
Agreed!

And it is to be hoped that we won't find 50 years from now that "the reduction of the margin of error" was done with the same kind of "enthusiasm" as Eddington did in 1919.
 
  • #45
Well that prediction did't take long to come true! Here is another: At least one of their unexpected signals (that they have to separate out) is magnitudes larger than the GR effects they are looking for.

Walter
 
  • #46
Polestar101 said:
Well that prediction did't take long to come true!
Too true!

However I take their statement above:
The experimental results in this first announcement will have been presented to and vetted by our Science Advisory Committee during SAC meeting #16, which is scheduled for 23-24 March 2007. These will be preliminary results, representing the lowest margin of error obtainable by that date.
to mean that they will be publishing the gross geodetic N-S and gravitomagnetic E-W precessions at the April meeting. It seems that we will have to wait until the end of 2007 for the high precession measurements.
Polestar101 said:
Here is another: At least one of their unexpected signals (that they have to separate out) is magnitudes larger than the GR effects they are looking for.
Will not the ~50"/yr proper motion caused by the Earth's 26,000 year period precession show up in the tracking of the guide star, and will be well modeled, rather than in the movement of the satellite borne gyroscopes?

Garth
 
Last edited:
  • #47
Polestar101 said:
Well that prediction did't take long to come true! Here is another: At least one of their unexpected signals (that they have to separate out) is magnitudes larger than the GR effects they are looking for.

Walter

Dear polestar101,

I have just read your email (i had forgotten to check this extra email box all
these days). Your idea looks very interesting also from the point of view of the
expectations in the framework of my dark gravity theory. Indeed, in this theory
i assumed my preferred frame to be the sun frame and then i got an anomalous
angle deviation related to the motion of Earth (and GP-B) around the sun.
But if the preferred frame is defined by a larger group of stars, then the
effect should be much larger and may be, as you say, related to the equinoxe
precession. All this is very exciting. I will try to attend the april meeting
where the first announcement of GP-B results is expected.

Unfortunately i cannot access the URL you give. I'm also convinced that the GP-B
results will be a major breakthrough in our understanding of gravity.
Could you please let me know why I'm not able to access your website...may be
its secured isn't it.

best regards

F Henry-couannier
 
  • #48
henryco said:
I'm also convinced that the GP-B
results will be a major breakthrough in our understanding of gravity.

They certainly seem to be making a meal over producing the results! :wink:

Garth
 
  • #49
Garth said:
Too true!

Will not the ~50"/yr proper motion caused by the Earth's 26,000 year period precession show up in the tracking of the guide star, and will be well modeled, rather than in the movement of the satellite borne gyroscopes?

Garth

Hi Garth - Since the spacecraft is floating free above the so called wobbling Earth it should NOT mimic the Earth's general precession. However, if the cause of this precession observable is actually and mainly due to the solar systems motion through space in a binary frame (as we suspect), then this motion (relative to the guidestar) should be detectable.

Just as GPB will pick up the 5"+ per orbit signal as an aberration of light between the spacecraft and the guidestar, and just as they pick up the 20"+ p/y signal due to the Earth's orbit around the sun, so too should they pick up a nearly 50"p/y signal if we are correct the precession observable is mainly the geometric effect of a solar system in motion.

My concern is what that signal looks like in the data. The spacecraft s orbital motion has a waveform in synch with the spacecraft s orbit periodicity, which will show many waves during the experiment period, so this known signal will be easy to spot. The orbit of the Earth around the sun should also be clear since it is a known motion and the experiment period allows time for both an ascending and descending phase. However, the binary motion (if it exists) would only reveal about 1/26,000ths of its waveform during the experiment period. Since it is completely unexpected, and no one is looking for it, it might just be attributed to anomalous drift or assumed to be part of the pollhode motion?? I just don'y know. Fortunately, the controls on this experiment are so tight and the people involved so professional I am encouraged they will take all precautions to carefully identify every signal before announcing the final GR results.

Time will tell.

Walter Cruttenden
 
  • #50
Well Walter, as I said, I find it hard to believe that:
1. The Moon does not induce the observed 26,000 yr period precession on the Earth as all the models of the geoid predict and,
2. There is an unobserved ~ stellar mass object, which is a binary companion to the Sun with a SMA of ~ 877AU that is responsible for the said observed precession.

On the other hand the Abstract for http://absimage.aps.org/image/MWS_APR07-2007-000261.pdf to be given at the APS Jacksonville conference in April reads.
The NASA Gravity Probe B (GP-B) orbiting gyroscope test of General Relativity, launched from Vandenberg Air Force Base on 20 April, 2004, tests two consequences of Einstein's theory: 1) the predicted 6.6 arc-s/year geodetic effect due to the motion of the gyroscope through the curved space-time around the Earth; 2) the predicted 0.041 arc-s/year frame-dragging e®ect due to the rotating Earth.
The mission has required the development of cryogenic gyroscopes with drift-rates 7 orders of magnitude better than the best inertial navigation gyroscopes. These and other essential technologies, for an instrument which once launched must work perfectly, have come into being as the result of an intensive collaboration between Stanford physicists and engineers, NASA and industry. GP-B entered its science phase on August 27, 2004 and completed data collection on September 29, 2005. Analysis of the data has been in continuing progress during and since the mission. This paper will describe the main features and challenges of the experiment and announce the first results.

Let's hope those first results will be able to resolve the gross different predictions of the competing theories mentioned in this thread:Einstein's General Relativity(GR)
Barber's Self Creation Cosmology (SCC),
Moffat's Nonsymmetric Gravitational Theory (NGT),
Hai-Long Zhao's Mass Variance SR Theory (MVSR),
Stanley Robertson's Newtonian Gravity Theory (NG),
Junhao & Xiang's Flat Space-Time Theory (FST).
R. L. Collin's Mass-Metric Relativity (MMR) and
F. Henry-Couannier's Dark Gravity Theory (DG).

The predictions are:

1. GPB Geodetic precession (North-South)
GR = 6.6144 arcsec/yr
SCC = 4.4096 arcsec/yr
NGT = 6.6144 - a small \sigma correction arcsec/yr
MVSR = 6.6144 arcsec/yr
NG = 1.6536 arcsec/yr
FST = 4.4096 arcsec/yr
MMR = -6.56124 arcsec/yr
DG = 6.6144 arcsec/yr


2. GPB gravitomagnetic frame dragging precession (East-West)
GR = 0.0409 arcsec/yr
SCC = 0.0409 arcsec/yr
NGT = 0.0409 arcsec/yr
MVSR = 0.0102 arcsec/yr
NG = 0.0102 arcsec/yr
FST = 0.0000 arcsec/yr
MMR = -0.01924 arcsec/yr
DG = 0.0000 arcsec/yr


But first, as I said, these alternative theories have to also pass all the other tests of GR as detailed in Clifford Will's paper The Confrontation between General Relativity and Experiment.Garth
 
Last edited by a moderator:
Back
Top