• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Amplitude with Feynman diagrams and gluon propagators

Problem Statement
Let's check that the term with ##\frac{l_\alpha l_\beta}{k^2}## in the following amplitude:
$$ \bar u(p) (-ig_s\gamma^\alpha t^a) \frac{i}{\displaystyle{\not}p+\not k} (-i\gamma^\nu e Q_f) \frac{i}{\displaystyle{\not}p'-\not k} (-ig_s \gamma^\beta t^a) v(p') \frac{i}{k^2} \biggl(-g_{\alpha\beta} + \frac{k_\alpha k_\beta}{k^2}\biggr) (\bar u(p) (-ieQ_f \gamma^\nu) v(p'))^* $$
is zero.
The amplitude comes from the interference of the NLO @ QCD of ##e^+ e^- -> q \bar q##. I have attached the Feynman diagrams.
We consider everything massless.
Relevant Equations
##\displaystyle{\not}p u(p) = m u(p)##
If m = 0 ----> ##\displaystyle{\not}p u(p) = 0##
The term which is relevant for the calculus is:
$$ \bar u(p) \gamma^\alpha \frac{1}{\displaystyle{\not}p+\not k} \gamma^\nu \frac{1}{\displaystyle{\not}p'-\not k} \gamma^\beta v(p') \frac{k_\alpha k_\beta}{k^2} $$
$$ \bar u(p) \displaystyle{\not}k \frac{1}{\displaystyle{\not}p+\not k} \gamma^\nu \frac{1}{\displaystyle{\not}p'-\not k} \displaystyle{\not}k \space v(p') $$
$$ \bar u(p) (\displaystyle{\not}k + \displaystyle{\not}p - \displaystyle{\not}p) \frac{1}{\displaystyle{\not}p+\not k} \gamma^\nu \frac{1}{\displaystyle{\not}p'-\not k} (\displaystyle{\not}k + \displaystyle{\not}p' - \displaystyle{\not}p') v(p') $$
$$ \bar u(p) \biggl(1 - \frac{\displaystyle{\not}p} {\displaystyle{\not}p+\not k}\biggr) \gamma^\nu \biggl(-1 + \frac{\displaystyle{\not}p'} {\displaystyle{\not}p'+\not k}\biggr) v(p') $$
The terms with ##\displaystyle{\not}p'## and ##\displaystyle{\not}p## vanish because of the relations mentioned above and I do not get zero. Where is my mistake?
Thanks in advance!


Want to reply to this thread?

"Amplitude with Feynman diagrams and gluon propagators" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving