Thank you very much
@Gaussian97. The key concepts are clear and the main problem solved. To finish it off though (you may have just sighed at this point. The following is just extra discussion so I would perfectly understand if you were to stop it here).
Gaussian97 said:
proving something is not invariant is not trivial in general. I would simply choose arbitrary values for the momenta and spin, choose a representation for the Dirac matrices and compute the amplitude numerically, seeing that is really not invariant.
Let us work out only with one the two Feynman Amplitudes
\begin{align*}
\mathcal{M}_a = - 2ime^2 \bar u(\vec p_f) \varepsilon\!\!\!/ (\vec k_f) \left[ \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon} \right] \varepsilon\!\!\!/ (\vec k_i)u(\vec p_i)
\end{align*}
Under the gauge symmetries
\begin{equation*}
\varepsilon\!\!\!/ \left(\vec k_i\right) \rightarrow \varepsilon\!\!\!/ \left(\vec k_i\right) + \lambda \not{\!k}_i, \qquad \varepsilon\!\!\!/ \left(\vec k_f\right) \rightarrow \varepsilon\!\!\!/ \left(\vec k_f\right) + \lambda' \not{\! k}_f
\end{equation*}
##\mathcal{M}_a## becomes
\begin{align*}
&\mathcal{M}_a'= -2ime^2 \bar u(\vec p_f) \left( \varepsilon\!\!\!/ \left(\vec k_f\right) + \lambda' \not{\! k}_f \right) \left[ \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon} \right] \left( \varepsilon\!\!\!/ \left(\vec k_i\right) + \lambda \not{\! k}_i \right) u(\vec p_i) \\
&= -2ime^2 \bar u(\vec p_f)\varepsilon\!\!\!/ \left(\vec k_f\right)\left[\frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\right]\varepsilon\!\!\!/ \left(\vec k_i\right) u(\vec p_i) \\
&- 2\lambda \lambda' ime^2 \bar u(\vec p_f)k\!\!\!/_f \left[\frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\right]k\!\!\!/_i u(\vec p_i) \\
&- 2 \lambda ime^2 \bar u(\vec p_f)\varepsilon\!\!\!/ \left(\vec k_f\right)\left[\frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\right]k\!\!\!/_i u(\vec p_i) \\
&- 2 \lambda' ime^2 \bar u(\vec p_f) k\!\!\!/_f \left[\frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\right]\varepsilon\!\!\!/ \left(\vec k_i\right) u(\vec p_i) \\
\end{align*}
We clearly see that the last three terms above will not vanish (as the negative counterpart coming from ##\mathcal{M}_b## are missing), so ##\mathcal{M}_a## is indeed changing under the given gauge symmetries.
However, you seemed to suggest we should explicitly show that each of those 3 terms yield a non-zero term through a particular representation of the gamma matrices (though I have to say I always try to avoid them while doing proofs).
OK let's show it for one of those 3, say (let me only write the structure)
\begin{equation*}
\bar u(\vec p_f)\varepsilon_{\mu} \left(\vec k_f\right)\left[ \gamma^{\mu} \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\gamma^{\nu} \right]k_{\nu} u(\vec p_i)
\end{equation*}
The following follows from M&S, pages 460 and 461
First off, let us pick the Dirac-Pauli representation i.e.
\begin{equation*}
\gamma^{0}=\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix},
\ \ \ \ \ \gamma^{j}= \begin{pmatrix}
0 & \sigma_j \\
-\sigma_j & 0 \\
\end{pmatrix}
\end{equation*}
Where ##\sigma_j## stand for Pauli matrices i.e.
\begin{equation*}
\sigma_x=\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix},
\ \ \ \ \ \sigma_y= \begin{pmatrix}
0 & -i \\
i & 0 \\
\end{pmatrix},
\ \ \ \ \ \sigma_z= \begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}
\end{equation*}
Next we need to write down a complete set of plane wave states. Defining two non-relativistic spinors i.e.
\begin{equation*}
\chi_1 := \chi_2' := \begin{pmatrix}
1 \\
0 \\
\end{pmatrix}, \ \ \ \ \chi_2 := \chi_1' := \begin{pmatrix}
0 \\
1 \\
\end{pmatrix}
\end{equation*}
We see that the relativistic Dirac spinor gets the form (please let me omit the prove; a plane-wave-solutions discussion would deserve a thread on its own)
\begin{equation*}
u_r(\vec 0) =
\begin{pmatrix}
\chi_r \\
0 \\
\end{pmatrix},
\ \ \ \ u_r(\vec p) = \frac{p\!\!\!/ + m}{(2m E_{\vec p} + 2m^2)^{1/2}}u_r(0)
\end{equation*}
Where ##r=1,2##
For our particular choice of gamma-matrices, we get
\begin{equation*}
\large u_1(\vec p)= \left(\frac{E_{\vec p} + m}{2m}\right)^{1/2}
\begin{pmatrix}
1 \\
0 \\
\frac{p^z}{E_{\vec p}+m} \\
\frac{p^x + ip^y}{E_{\vec p}+m}
\end{pmatrix}, \ \ \ \
u_2(\vec p) = \left(\frac{E_{\vec p} + m}{2m}\right)^{1/2}
\begin{pmatrix}
0 \\
1 \\
\frac{p^x - ip^y}{E_{\vec p}+m} \\
\frac{-p^z}{E_{\vec p}+m}
\end{pmatrix}
\end{equation*}
Besides, we must pick a particular representation of the polarization vectors as well. It is costumary to choose the following (M&S page 77, EQ 5.21)
\begin{equation*}
\varepsilon_{0}^{\mu} (\vec k) := (1,0,0,0)
\end{equation*}
\begin{equation*}
\varepsilon_{j}^{\mu} (\vec k) := (0, \vec \varepsilon_{j} (\vec k))
\end{equation*}
Before proceeding with the computation: is the above procedure what you meant?