JD_PM
- 1,125
- 156
Great, let us prove that the last term of the master equation at #27 vanishes (the procedure is completely analogous to what we have done so far). Its structure is
$$\bar u(\vec p_f)\left[k\!\!\!/_f \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\gamma^{\nu} - \gamma^{\nu} \frac{\Lambda^{+}(\vec p_i - \vec k_f)}{2p_i \cdot k_f - i \varepsilon}k\!\!\!/_f \right] u(\vec p_i) \\$$
Let's work out first ##\bar u(\vec p_f) k\!\!\!/_f \Lambda^{+}(\vec p_i + \vec k_i)##
\begin{align*}
&\bar{u}(\vec p_f)\not{\!k}_f\Lambda^+(\vec p_i + \vec k_i=\vec p_f + \vec k_f)= \bar{u}(\vec p_f)\not{\!k}_f \frac{p\!\!\!/_f + k\!\!\!/_f + m}{2 m}\\
&= \bar{u}(\vec p_f) \frac{k\!\!\!/_f p\!\!\!/_f }{2 m} + \frac 1 2 \bar{u}(\vec p_f) \not{\!k}_f \\
&= \frac{\bar u(\vec p_f)}{2 m}\Big[ 2 p_f \cdot k_f + \left(-p\!\!\!/_f + m\right) k\!\!\!/_f \Big] \\
&= \frac{p_f\cdot k_f}{m} \bar u(\vec p_f)
\end{align*}
Where we used
$$p\!\!\!/ k\!\!\!/ = p^{\mu} \gamma_{\mu} \gamma_{\nu} k^{\nu} = p^{\mu} ( 2\eta_{\mu \nu} - \gamma_{\nu} \gamma_{\mu}) k^{\nu} = -p^{\mu} \gamma_{\nu} \gamma_{\mu} k^{\nu} + 2 \eta_{\mu \nu}p^{\mu}k^{\nu} = -k\!\!\!/ p\!\!\!/ + 2 p \cdot k$$
\begin{equation*}
k\!\!\!/_f k\!\!\!/_f = k^2 = 0
\end{equation*}
Analogously we compute ##\Lambda^{+}(\vec p_i - \vec k_i)k\!\!\!/_f u(\vec p_i)##
\begin{equation*}
\Lambda^{+}(\vec p_i - \vec k_i)k\!\!\!/_f u(\vec p_i)= \frac{p_i\cdot k_f}{m} u(\vec p_i)
\end{equation*}
Thus we get
$$\frac{\bar u(\vec p_f) \gamma^{\mu} u(\vec p_i)}{m} \Big[ \frac{p_f \cdot k_f}{2p_i \cdot k_i + i\varepsilon}-\frac{p_i \cdot k_f}{2p_i \cdot k_f - i\varepsilon}\Big]$$
By energy-momentum conservation we know that ##p_f \cdot k_f = p_i \cdot k_i##. Thus, by taking the limit
##\varepsilon \to 0##, we see that the above term vanishes.
We are only left to show that the following term vanishes
$$\bar u(\vec p_f)\left[k\!\!\!/_f \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}k\!\!\!/_i - k\!\!\!/_i \frac{\Lambda^{+}(\vec p_i - \vec k_f)}{2p_i \cdot k_f - i \varepsilon}k\!\!\!/_f \right] u(\vec p_i) \\$$
Which looks a bit harder because we've got an extra ##k\!\!\!/## to deal with. Working on it...
$$\bar u(\vec p_f)\left[k\!\!\!/_f \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}\gamma^{\nu} - \gamma^{\nu} \frac{\Lambda^{+}(\vec p_i - \vec k_f)}{2p_i \cdot k_f - i \varepsilon}k\!\!\!/_f \right] u(\vec p_i) \\$$
Let's work out first ##\bar u(\vec p_f) k\!\!\!/_f \Lambda^{+}(\vec p_i + \vec k_i)##
\begin{align*}
&\bar{u}(\vec p_f)\not{\!k}_f\Lambda^+(\vec p_i + \vec k_i=\vec p_f + \vec k_f)= \bar{u}(\vec p_f)\not{\!k}_f \frac{p\!\!\!/_f + k\!\!\!/_f + m}{2 m}\\
&= \bar{u}(\vec p_f) \frac{k\!\!\!/_f p\!\!\!/_f }{2 m} + \frac 1 2 \bar{u}(\vec p_f) \not{\!k}_f \\
&= \frac{\bar u(\vec p_f)}{2 m}\Big[ 2 p_f \cdot k_f + \left(-p\!\!\!/_f + m\right) k\!\!\!/_f \Big] \\
&= \frac{p_f\cdot k_f}{m} \bar u(\vec p_f)
\end{align*}
Where we used
$$p\!\!\!/ k\!\!\!/ = p^{\mu} \gamma_{\mu} \gamma_{\nu} k^{\nu} = p^{\mu} ( 2\eta_{\mu \nu} - \gamma_{\nu} \gamma_{\mu}) k^{\nu} = -p^{\mu} \gamma_{\nu} \gamma_{\mu} k^{\nu} + 2 \eta_{\mu \nu}p^{\mu}k^{\nu} = -k\!\!\!/ p\!\!\!/ + 2 p \cdot k$$
\begin{equation*}
k\!\!\!/_f k\!\!\!/_f = k^2 = 0
\end{equation*}
Analogously we compute ##\Lambda^{+}(\vec p_i - \vec k_i)k\!\!\!/_f u(\vec p_i)##
\begin{equation*}
\Lambda^{+}(\vec p_i - \vec k_i)k\!\!\!/_f u(\vec p_i)= \frac{p_i\cdot k_f}{m} u(\vec p_i)
\end{equation*}
Thus we get
$$\frac{\bar u(\vec p_f) \gamma^{\mu} u(\vec p_i)}{m} \Big[ \frac{p_f \cdot k_f}{2p_i \cdot k_i + i\varepsilon}-\frac{p_i \cdot k_f}{2p_i \cdot k_f - i\varepsilon}\Big]$$
By energy-momentum conservation we know that ##p_f \cdot k_f = p_i \cdot k_i##. Thus, by taking the limit
##\varepsilon \to 0##, we see that the above term vanishes.
We are only left to show that the following term vanishes
$$\bar u(\vec p_f)\left[k\!\!\!/_f \frac{\Lambda^{+}(\vec p_i + \vec k_i)}{2p_i \cdot k_i + i \varepsilon}k\!\!\!/_i - k\!\!\!/_i \frac{\Lambda^{+}(\vec p_i - \vec k_f)}{2p_i \cdot k_f - i \varepsilon}k\!\!\!/_f \right] u(\vec p_i) \\$$
Which looks a bit harder because we've got an extra ##k\!\!\!/## to deal with. Working on it...