- #1

- 167

- 7

## Summary:

- Does such an equation exist?

Is there an equation that a surface dweller could developedto globally describe his or her surface?

Let us say a sphere?

If we determine that curvature is everywhere constant what would be an equation that would describe that surface ? (simply that curvature is everywhere constant?)

And if curvature is not constant (say an ellipse) would there be any way of expressing this in a global mathematical form and not just as an agglomeration of local measurements of local curvature?

Are global equations of surfaces almost by definition extrinsic?

Let us say a sphere?

If we determine that curvature is everywhere constant what would be an equation that would describe that surface ? (simply that curvature is everywhere constant?)

And if curvature is not constant (say an ellipse) would there be any way of expressing this in a global mathematical form and not just as an agglomeration of local measurements of local curvature?

Are global equations of surfaces almost by definition extrinsic?