- #1
Hamiltonian
- 296
- 193
- TL;DR Summary
- doubt in the derivation of the expression for calculating the surface integral for a function F.
this method of derivation is approximating the function using a polyhedron.
concentrating on one of the surfaces(say the L'th surface which has an area ##\Delta S_l## and let ##(x_l,y_l,z_l)## be the coordinate of the point at which the face is tangent to the surface and let ##\hat n## be the unit normal vector)
the area of this surface is given by ##F(x_l, y_l, z_l).\hat n_l \Delta S_l##
on adding all of these we get,
my doubt in this derivation is why is there a dot product being taken between the vectors and then multiplied by the area(basically I don't understand why this equation, ##F(x_l, y_l, z_l).\hat n_l \Delta S_l## give the area as shouldn't the summation of all the ##\Delta S_l## simply be equal to the surface area of the function??)
concentrating on one of the surfaces(say the L'th surface which has an area ##\Delta S_l## and let ##(x_l,y_l,z_l)## be the coordinate of the point at which the face is tangent to the surface and let ##\hat n## be the unit normal vector)
the area of this surface is given by ##F(x_l, y_l, z_l).\hat n_l \Delta S_l##
on adding all of these we get,
my doubt in this derivation is why is there a dot product being taken between the vectors and then multiplied by the area(basically I don't understand why this equation, ##F(x_l, y_l, z_l).\hat n_l \Delta S_l## give the area as shouldn't the summation of all the ##\Delta S_l## simply be equal to the surface area of the function??)