We know that a linear operator [tex]T[/tex]:X[tex]\rightarrow[/tex]Y between two Banach Spaces X and Y is an open mapping if [tex]T[/tex] is surjective. Here open mapping means that [tex]T[/tex] sends open subsets of X to open subsets of Y.(adsbygoogle = window.adsbygoogle || []).push({});

Prove that if [tex]T[/tex] is an open mapping between two Banach Spaces then it is not necessarily a closed mapping, i.e. there could exist a closed subset of X that maps to a subset of Y which is not closed.

In other words, give a counter example. Being new to functional analysis, this has made me scratch my head..

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# An open mapping is not necessarily a closed mapping in functional analysis

**Physics Forums | Science Articles, Homework Help, Discussion**