B Analogies for Gravitational Attraction in Physics

geordief
Messages
216
Reaction score
49
TL;DR Summary
We have the trampoline to be sure but are there others?
I am thinking of the mechanism that causes mass-energy to curve spacetime

We have the Wheeler (was it ?)description, viz approx "mass tells spacetime how to curve and spacetime tells matter how to move...".

Are there any analogous circumstances in other areas of physics where all (or a subgroup of)objects attract each other and never repel?

I am just asking for the sake of being able to get some kind of intuition as to the effect and not in any hope that this might offer any real insight...
 
Physics news on Phys.org
The trampoline is a terrible analogy because it's demonstrating spatial curvature, which is only a tiny part of gravity in all but the most extreme circumstances. The ##tt## component of the Schwarzschild metric, which is responsible for almost all day to day gravitational effects, is not illustrated at all.

@A.T. produced this video, which is a much more honest illustration. I believe he says it is based on representations in the book "Relativity visualised" by Lewis Carroll Epstein.
 
Ibix said:
The trampoline is a terrible analogy because it's demonstrating spatial curvature, which is only a tiny part of gravity in all but the most extreme circumstances. The ##tt## component of the Schwarzschild metric, which is responsible for almost all day to day gravitational effects, is not illustrated at all.

@A.T. produced this video, which is a much more honest illustration. I believe he says it is based on representations in the book "Relativity visualised" by Lewis Carroll Epstein.

Yes,I have seen that one.

I would class that as an analogy too (and yes,I am asking for analogies) but I was fishing for some kind of a circumstance where all (or all of a class of) objects exert a force of attraction on each other-no repulsion involved.

As I say ,it is just a request based on personal curiosity rather than based on anything of threal importance.

Edit: see you have changed the video.Will have a look at it later

Edit#2 the video seems to have "reverted back" Apologies.

Seems to be a smorgasbord of related videos showing .I can't keep up with this new fangled youtube thing.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Back
Top