Analysis of Shock Formation from Traffic Light Red Signal

Click For Summary

Discussion Overview

The discussion revolves around the analysis of shock formation in traffic flow when a traffic light turns red. Participants explore the mathematical modeling of the resulting wave motion, governed by a specific partial differential equation, and the implications of initial density profiles on shock behavior. The scope includes theoretical modeling and mathematical reasoning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that the wave motion of the disturbance is described by the equation $\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0$, with $c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)$.
  • There is a suggestion that two shocks emanate from the origin, with participants attempting to derive expressions for shock speed using the method of characteristics.
  • One participant mentions that the initial density profile has $\rho_0$ for $x<0$ and $x>0$, and $\rho_{\text{max}}$ at $x=0$, indicating a discontinuity that may affect shock formation.
  • Another participant expresses confusion regarding the boundary conditions, questioning the validity of conditions stated for $t<0$ and $t=0$ when the model is said to be valid only for $t=0^+$.

Areas of Agreement / Disagreement

Participants express differing views on the boundary conditions and their implications for the model. There is no consensus on how to reconcile the stated conditions with the model's validity, indicating ongoing debate and uncertainty.

Contextual Notes

Participants note that the model is only valid for $t=0^+$, which raises questions about the applicability of boundary conditions at $t<0$ and $t=0$. The discussion reflects limitations in the assumptions made regarding the initial conditions and their impact on the shock analysis.

Dustinsfl
Messages
2,217
Reaction score
5
Suppose traffic is moving uniformly with a constant density $\rho_0$ when a traffic light turns red.
At time $t = 0^+$, the initial density profile is then modeled according to the figure below.
The resulting wave motion of the disturbance is governed by
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)
$$Argue that two shocks emanate from the origin and obtain expressions for the shock speed.

From method of characteristics, we have $t=r$ and $x=tu_{\text{max}}\left(1-\frac{2\rho}{\rho_{\text{max}}}\right)+x_0$.

I don't know what to do now.
 
Physics news on Phys.org
dwsmith said:
Suppose traffic is moving uniformly with a constant density $\rho_0$ when a traffic light turns red.
At time $t = 0^+$, the initial density profile is then modeled according to the figure below.
The resulting wave motion of the disturbance is governed by
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)
$$Argue that two shocks emanate from the origin and obtain expressions for the shock speed.

From method of characteristics, we have $t=r$ and $x=tu_{\text{max}}\left(1-\frac{2\rho}{\rho_{\text{max}}}\right)+x_0$.

I don't know what to do now.

I forgot to add that when $x<0$ and $x>0$ the density is $\rho_0$.
When $x=0$, the density is $\rho_{\text{max}}$.
 
View attachment 341

How can I convert this into boundary conditions.

I know that we must have $\rho_0$ for $x<0$ and $x>0$.

As before, we have that $t = r$.
So $\frac{d\rho}{dt} = 0\Rightarrow \rho = c$.
When $t = 0$ and $x = x_0$, we have $\rho(x_0,0) = c$.
Thus,
$$
\rho = \rho(x_0,0).
$$
Now, we have the ODE
$$
\frac{dx}{dt} = u_{\text{max}}\left(1 - \frac{2\rho(x_0,0)}{\rho_{\text{max}}}\right) \Rightarrow x = u_{\text{max}}\left(1 - \frac{2\rho(x_0,0)}{\rho_{\text{max}}}\right)t + x_0.
$$
 
dwsmith said:
Suppose traffic is moving uniformly with a constant density $\rho_0$ when a traffic light turns red.
At time $t = 0^+$, the initial density profile is then modeled according to the figure below.
The resulting wave motion of the disturbance is governed by
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)
$$Argue that two shocks emanate from the origin and obtain expressions for the shock speed.

From method of characteristics, we have $t=r$ and $x=tu_{\text{max}}\left(1-\frac{2\rho}{\rho_{\text{max}}}\right)+x_0$.

I don't know what to do now.

dwsmith said:
I forgot to add that when $x<0$ and $x>0$ the density is $\rho_0$.
When $x=0$, the density is $\rho_{\text{max}}$.

Hi dwsmith, :)

What I don't understand in this problem is that in your first post you have mentioned that this model is valid only for \(t=0^+\) which I assume is, \(t>0\). Then in your second post the boundary conditions are given for \(t<0\) and \(t=0\). Am I missing something here?

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

What I don't understand in this problem is that in your first post you have mentioned that this model is valid only for \(t=0^+\) which I assume is, \(t>0\). Then in your second post the boundary conditions are given for \(t<0\) and \(t=0\). Am I missing something here?

Kind Regards,
Sudharaka.

Post 3 has the picture. Click and you will see the information.
 

Similar threads

Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K