Analytical mechanics- working with Lagrangian and holonomic constraints

Click For Summary
SUMMARY

The discussion centers on solving a problem in analytical mechanics using effective potential energy, specifically the formula Veff = J2/(2mr2). Participants clarify that effective potentials are applicable when reducing higher-dimensional problems to lower-dimensional ones, which is not relevant for the one-dimensional problem described. The conservation of angular momentum is debated, with the consensus that it is not conserved due to external torque acting on the top cylinder. The problem's configuration is determined by a single parameter, indicating its one-dimensional nature.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with effective potential energy concepts
  • Knowledge of angular momentum and its conservation principles
  • Basic grasp of rotational dynamics and torque
NEXT STEPS
  • Study the derivation and applications of effective potential energy in Lagrangian mechanics
  • Explore the principles of angular momentum conservation in various mechanical systems
  • Learn about the role of external torques in dynamic systems
  • Investigate one-dimensional motion in constrained systems
USEFUL FOR

Students and professionals in physics, particularly those studying analytical mechanics, Lagrangian dynamics, and rotational motion. This discussion is beneficial for anyone seeking to deepen their understanding of effective potentials and angular momentum in mechanical systems.

ronniegertman
Messages
2
Reaction score
0
Homework Statement
on top of a static cylinder with a radius of R there is a cylinder with a radius of r, it is free to move, and conducts a rolling without slipping motion. When will the small cylinder detach from the larger cylinder?(R>r)
Relevant Equations
I want to solve this problem using effective potential energy. I think that since there is conservation of angular momentum, J always equals 0.
The tutor solved the problem using kinetic spinning energy though I find it very difficult and confusing to do so, therefore, I would like to know if there is a way to solve the problem using effective potential energy,
Veff = J2/(2mr2

below is a sketch of the problem
WhatsApp Image 2023-12-02 at 22.34.17.jpeg
 
Physics news on Phys.org
If I understand your problem description correctly, there is only one configuration parameter. Effective potentials appear when you use conserved quantities to rewrite a higher dimensional problem as a lower dimensional one. It is not really applicable to a problem that already has only one parameter.

It is also unclear to me why you think angular momentum would be conserved. The angular momentum of what and why would it be conserved?
 
I am still new to this kind of material,
Orodruin said:
If I understand your problem description correctly, there is only one configuration parameter. Effective potentials appear when you use conserved quantities to rewrite a higher dimensional problem as a lower dimensional one. It is not really applicable to a problem that already has only one parameter.

It is also unclear to me why you think angular momentum would be conserved. The angular momentum of what and why would it be conserved?
I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point). Moreover, could you please explain what do you mean by “higher dimensional problem” and why my problem is one dimensional?
 
ronniegertman said:
I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point).
As I understand this problem, the bottom cylinder is "static" which means that it is not allowed to move in any way. The only object that moves is the top cylinder. An external torque, about the axis of contact between cylinders, is generated by gravity and acts on the top cylinder. The external torque results in angular acceleration which means that angular momentum is not conserved.
 
ronniegertman said:
I am still new to this kind of material,

I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point). Moreover, could you please explain what do you mean by “higher dimensional problem” and why my problem is one dimensional?
Your problem is one-dimensional because the configuration of the system you describe can be determined with a single parameter, eg, where along the big cylinder is the small one.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
28
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
5
Views
2K