Analytical mechanics- working with Lagrangian and holonomic constraints

Click For Summary

Homework Help Overview

The discussion revolves around a problem in analytical mechanics, specifically focusing on Lagrangian mechanics and holonomic constraints. Participants are exploring the concepts of effective potential energy and angular momentum in the context of a system involving two cylinders.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are examining the use of effective potential energy as an alternative approach to solving the problem. Questions are raised regarding the applicability of effective potentials in a system with a single configuration parameter. There is also discussion about the conservation of angular momentum and the conditions under which it may or may not be conserved.

Discussion Status

The discussion is ongoing, with participants seeking clarification on the concepts involved. Some have provided insights into the nature of the problem and the implications of angular momentum conservation, while others are questioning the assumptions made about the system's dimensionality and constraints.

Contextual Notes

There is a mention of the bottom cylinder being static and the top cylinder being the only moving object, which introduces considerations regarding external torques and angular acceleration. Participants express varying levels of familiarity with the material, indicating a range of understanding within the discussion.

ronniegertman
Messages
2
Reaction score
0
Homework Statement
on top of a static cylinder with a radius of R there is a cylinder with a radius of r, it is free to move, and conducts a rolling without slipping motion. When will the small cylinder detach from the larger cylinder?(R>r)
Relevant Equations
I want to solve this problem using effective potential energy. I think that since there is conservation of angular momentum, J always equals 0.
The tutor solved the problem using kinetic spinning energy though I find it very difficult and confusing to do so, therefore, I would like to know if there is a way to solve the problem using effective potential energy,
Veff = J2/(2mr2

below is a sketch of the problem
WhatsApp Image 2023-12-02 at 22.34.17.jpeg
 
Physics news on Phys.org
If I understand your problem description correctly, there is only one configuration parameter. Effective potentials appear when you use conserved quantities to rewrite a higher dimensional problem as a lower dimensional one. It is not really applicable to a problem that already has only one parameter.

It is also unclear to me why you think angular momentum would be conserved. The angular momentum of what and why would it be conserved?
 
  • Like
Likes   Reactions: TSny
I am still new to this kind of material,
Orodruin said:
If I understand your problem description correctly, there is only one configuration parameter. Effective potentials appear when you use conserved quantities to rewrite a higher dimensional problem as a lower dimensional one. It is not really applicable to a problem that already has only one parameter.

It is also unclear to me why you think angular momentum would be conserved. The angular momentum of what and why would it be conserved?
I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point). Moreover, could you please explain what do you mean by “higher dimensional problem” and why my problem is one dimensional?
 
ronniegertman said:
I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point).
As I understand this problem, the bottom cylinder is "static" which means that it is not allowed to move in any way. The only object that moves is the top cylinder. An external torque, about the axis of contact between cylinders, is generated by gravity and acts on the top cylinder. The external torque results in angular acceleration which means that angular momentum is not conserved.
 
ronniegertman said:
I am still new to this kind of material,

I’m still quite new to such material, but I believe that the angular momentum of the top cylinder is conserved (in the center of mass point). Moreover, could you please explain what do you mean by “higher dimensional problem” and why my problem is one dimensional?
Your problem is one-dimensional because the configuration of the system you describe can be determined with a single parameter, eg, where along the big cylinder is the small one.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K