Analyzing Discontinuities of $f(x,y)$

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
SUMMARY

The function \(f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\ 0, & \text{if } x = 0\text{ or } y = 0\end{cases}\) is analyzed for points of discontinuity. L'Hôpital's rule is not applicable for multivariable functions, but the Sandwich theorem confirms that \(f\) is continuous at \((0,0)\). Discontinuities occur along the lines \(S=\left\{(0,y)\mbox{ where }y\neq 0\right\}\cup\left\{(x,0)\mbox{ where }x\neq 0\right\}\).

PREREQUISITES
  • Understanding of multivariable calculus
  • Familiarity with limits and continuity
  • Knowledge of the Sandwich theorem
  • Basic understanding of trigonometric functions
NEXT STEPS
  • Study the Sandwich theorem in detail
  • Learn about limits in multivariable calculus
  • Explore continuity and discontinuity in functions of multiple variables
  • Investigate the application of L'Hôpital's rule in single-variable calculus
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, as well as educators teaching multivariable functions and continuity concepts.

Dustinsfl
Messages
2,217
Reaction score
5
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use l'hospital's rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.
 
Physics news on Phys.org
dwsmith said:
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use l'hospital's rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.

Hi dwsmith, :)

L'Hopital's rule is for single variable functions and extensions of it to multivariable functions is rare, but you maybe interested by >>this<<. You can solve this problem using the Sandwitch theorem,

When, \(x\neq 0\) and \(y\neq 0\) we have,

\[f(x,y)=(x + y)\sin\frac{1}{x}\sin\frac{1}{y}=x\sin\frac{1}{x} \sin\frac{1}{y} + y\sin\frac{1}{x}\sin\frac{1}{y}\]

Note that,

\[-1\leq\sin\frac{1}{x}\sin\frac{1}{y}\leq 1\]

\[\Rightarrow -x\leq x\sin\frac{1}{x}\sin\frac{1}{y}\leq x\mbox{ and }-y\leq y\sin\frac{1}{x}\sin\frac{1}{y}\leq y\]

So when both \(x,y\rightarrow 0\) we have,

\[\lim_{(x,y)\rightarrow (0,0)}f(x,y)=0=f(0,0)\]

Therefore \(f\) is continuous at the point \((0,0)\). However if only one variable \(x\) or \(y\) tends to zero and the other one doesn't the limit does not exist. Hence the points of discontinuities are,

\[S=\left\{(0,y)\mbox{ where }y\neq 0\right\}\cup\left\{(x,0)\mbox{ where }x\neq 0\right\}\]

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
859
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K