MHB Analyzing Discontinuities of $f(x,y)$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
The function f(x,y) is defined piecewise, with a limit of 0 at (0,0) indicating continuity at that point. L'Hôpital's rule is not applicable for multivariable functions, but the Sandwich theorem can be used to analyze continuity. As both x and y approach 0, f(x,y) approaches 0, confirming continuity at (0,0). However, discontinuities arise when either x or y approaches 0 while the other remains non-zero, leading to points of discontinuity along the axes. Thus, the discontinuities are located at (0,y) for y≠0 and (x,0) for x≠0.
Dustinsfl
Messages
2,217
Reaction score
5
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use L'Hopitals rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.
 
Physics news on Phys.org
dwsmith said:
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use L'Hopitals rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.

Hi dwsmith, :)

L'Hopital's rule is for single variable functions and extensions of it to multivariable functions is rare, but you maybe interested by >>this<<. You can solve this problem using the Sandwitch theorem,

When, \(x\neq 0\) and \(y\neq 0\) we have,

\[f(x,y)=(x + y)\sin\frac{1}{x}\sin\frac{1}{y}=x\sin\frac{1}{x} \sin\frac{1}{y} + y\sin\frac{1}{x}\sin\frac{1}{y}\]

Note that,

\[-1\leq\sin\frac{1}{x}\sin\frac{1}{y}\leq 1\]

\[\Rightarrow -x\leq x\sin\frac{1}{x}\sin\frac{1}{y}\leq x\mbox{ and }-y\leq y\sin\frac{1}{x}\sin\frac{1}{y}\leq y\]

So when both \(x,y\rightarrow 0\) we have,

\[\lim_{(x,y)\rightarrow (0,0)}f(x,y)=0=f(0,0)\]

Therefore \(f\) is continuous at the point \((0,0)\). However if only one variable \(x\) or \(y\) tends to zero and the other one doesn't the limit does not exist. Hence the points of discontinuities are,

\[S=\left\{(0,y)\mbox{ where }y\neq 0\right\}\cup\left\{(x,0)\mbox{ where }x\neq 0\right\}\]

Kind Regards,
Sudharaka.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 8 ·
Replies
8
Views
606
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
25
Views
3K
Replies
21
Views
2K