MHB Analyzing Discontinuities of $f(x,y)$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Dustinsfl
Messages
2,217
Reaction score
5
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use L'Hopitals rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.
 
Physics news on Phys.org
dwsmith said:
$f(x,y) = \begin{cases}(x + y)\sin\frac{1}{x}\sin\frac{1}{y}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}$ We can re-write $f$ as
$$
f(x,y) = \begin{cases}
\frac{x + y}{xy}\frac{\sin\frac{1}{x}\sin\frac{1}{y}}{\frac{1}{x}\frac{1}{y}}, & \text{if } x\neq 0\text{ and } y\neq 0\\
0, & \text{if } x = 0\text{ or } y = 0\end{cases}
$$

Can I use L'Hopitals rule here? Taking the limit gives 0/0. I am looking for points of discontinuity if any exist in $f$.

Hi dwsmith, :)

L'Hopital's rule is for single variable functions and extensions of it to multivariable functions is rare, but you maybe interested by >>this<<. You can solve this problem using the Sandwitch theorem,

When, \(x\neq 0\) and \(y\neq 0\) we have,

\[f(x,y)=(x + y)\sin\frac{1}{x}\sin\frac{1}{y}=x\sin\frac{1}{x} \sin\frac{1}{y} + y\sin\frac{1}{x}\sin\frac{1}{y}\]

Note that,

\[-1\leq\sin\frac{1}{x}\sin\frac{1}{y}\leq 1\]

\[\Rightarrow -x\leq x\sin\frac{1}{x}\sin\frac{1}{y}\leq x\mbox{ and }-y\leq y\sin\frac{1}{x}\sin\frac{1}{y}\leq y\]

So when both \(x,y\rightarrow 0\) we have,

\[\lim_{(x,y)\rightarrow (0,0)}f(x,y)=0=f(0,0)\]

Therefore \(f\) is continuous at the point \((0,0)\). However if only one variable \(x\) or \(y\) tends to zero and the other one doesn't the limit does not exist. Hence the points of discontinuities are,

\[S=\left\{(0,y)\mbox{ where }y\neq 0\right\}\cup\left\{(x,0)\mbox{ where }x\neq 0\right\}\]

Kind Regards,
Sudharaka.
 
Back
Top