MHB And rule for multiple selections

  • Thread starter Thread starter Irish teacher
  • Start date Start date
  • Tags Tags
    Multiple
AI Thread Summary
The discussion revolves around calculating the number of three-digit numbers formed from the digits 2, 3, 4, 5, and 6, focusing on those under 400 and divisible by 5. The total outcomes are correctly calculated as 60, with 24 outcomes under 400 and 12 divisible by 5. However, the confusion arises in determining the outcomes that are both under 400 and divisible by 5, which are correctly identified as 6 through direct enumeration. The application of the AND probability rule is clarified, emphasizing that the events are not independent, necessitating a different approach for accurate calculation. Understanding the distinctions between independent and dependent events is crucial for solving such probability problems effectively.
Irish teacher
Messages
2
Reaction score
0
Hello all I'm new as I'm just revising my maths to teach irish leavers in revising and exams maths and sciences. This exam section has me puzzled hope you can help

Three digit numbers are made from the numbers 2,3,4,5,6 .. See questions and my calls below

Total number of outcomes is ... 5x4x3 = 60

Number of outcomes under 400 ... 2/5 x 60 = 24
Number of outcomes divisible by 5 ... 1/5 x 60 = 12

Here's the tricky bit
Number of outcomes both under 400 and divisible by five... If I list these there are 6 but if I try the AND equation it's 4.8 ( 1/5x2/5 x 60) what am I missing in the calculation?

I'm sure it's something obvious but I'm completely blind to it. Hope you can help IT
 
Mathematics news on Phys.org
Irish teacher said:
Hello all I'm new as I'm just revising my maths to teach irish leavers in revising and exams maths and sciences. This exam section has me puzzled hope you can help

Three digit numbers are made from the numbers 2,3,4,5,6 .. See questions and my calls below

Total number of outcomes is ... 5x4x3 = 60

Number of outcomes under 400 ... 2/5 x 60 = 24
Number of outcomes divisible by 5 ... 1/5 x 60 = 12

Here's the tricky bit
Number of outcomes both under 400 and divisible by five... If I list these there are 6 but if I try the AND equation it's 4.8 ( 1/5x2/5 x 60) what am I missing in the calculation?

I'm sure it's something obvious but I'm completely blind to it. Hope you can help IT

Hi Irish teacher! Welcome to MHB!

Which AND rule are you talking about?

Alternatively, we have:

Number of outcomes under 400 ...
First digit must be 2 or 3: 2 possibilities.
Second digit can be any of the 4 remaining digits.
Third digit can be any of the 3 remaining digits.
So in total: 2 x 4 x 3 = 24

Number of outcomes both under 400 and divisible by five...
First digit must be 2 or 3: 2 possibilities.
Last digit must be 5: 1 possibility.
Second digit can be any of the 3 remaining digits.
So in total: 2 x 3 x 1 = 6.
 
Hi ILS thankyou so much for your replyThat's so useful.I'm concerned though as we teach the AND and OR equations So if it asks below 400 or divisible by 5 we would say
OR

P(aor b) = pa + pb -( p (a+b).

Then if it's 400 and divisible by 5 we would use the AND equation
P( a+b) = pa x pb

Which clearly doesn't work in this case. I guess it's about identifying which questions require these and which is looking for the type of solution above. Thanks again for your reply.

IT

I like Serena said:
Hi Irish teacher! Welcome to MHB!

Which AND rule are you talking about?

Alternatively, we have:

Number of outcomes under 400 ...
First digit must be 2 or 3: 2 possibilities.
Second digit can be any of the 4 remaining digits.
Third digit can be any of the 3 remaining digits.
So in total: 2 x 4 x 3 = 24

Number of outcomes both under 400 and divisible by five...
First digit must be 2 or 3: 2 possibilities.
Last digit must be 5: 1 possibility.
Second digit can be any of the 3 remaining digits.
So in total: 2 x 3 x 1 = 6.
 
The product rule for probabilities is $\DeclareMathOperator\and{and}
P(A\and B)=P(A)P(B)$, which holds only if A and B are independent.
In our case, 'less than 400' and 'divisible by 5' are unfortunately not independent.

So we would need to apply the general product rule for probabilities: $P(A\and B)=P(A\mid B)P(B)$.
Then if we draw a random number with those digits, we have:
$$P(\text{divisible by 5}\and \text{below 400})
=P(\text{divisible by 5} \mid\text{below 400})\,P(\text{below 400}) \\
=\frac{\text{# divisible by 5 given first digit is below 4}}{\text{# numbers below 400}}\cdot\frac{\text{# numbers below 400}}{\text{#total}}
=\frac{2\cdot 3\cdot 1}{2\cdot 4\cdot 3}\cdot \frac{2\cdot 4\cdot 3}{5\cdot 4\cdot 3}
= \frac 6{60}
$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top