Angular frequency of an ammonia molecule

Click For Summary
SUMMARY

The discussion focuses on calculating the angular frequency of oscillation for an ammonia molecule subjected to a static electric field. The dipole moment is given as ##d_0=5*10^{-30} C.m##, and the electric field strength is ##\mathcal { E }=1*10^{6 }V*m^{-1}##. The Hamiltonian is expressed in the basis of states ##|ψ+⟩## and ##|ψ−⟩##, leading to the formula for angular frequency: ##\Omega=\frac { 2 } { \hbar }\sqrt{( \frac { \hbar \omega _ { 0 } } { 2 }) ^ { 2 } + ( d _ { 0 } \mathcal { E } ) ^ { 2 }}##. The calculated angular frequency is ##\Omega=188000000000 \; rad.s^{-1}##, and clarification is sought regarding the units of ##\omega_0##.

PREREQUISITES
  • Understanding of quantum mechanics and wavefunctions
  • Familiarity with Hamiltonian mechanics
  • Knowledge of dipole moments and electric fields
  • Proficiency in mathematical manipulation of physical equations
NEXT STEPS
  • Study the principles of quantum mechanics related to dipole moments
  • Learn about the derivation and applications of Hamiltonians in quantum systems
  • Explore the relationship between angular frequency and oscillatory motion in quantum mechanics
  • Investigate the implications of static electric fields on molecular behavior
USEFUL FOR

Students and professionals in physics, particularly those specializing in quantum mechanics, molecular physics, and anyone involved in theoretical calculations of molecular behavior under external fields.

yamata1
Messages
61
Reaction score
1
Hello
1. Homework Statement

The dipole moment of an ammonia molecule is ##d_0=5*10^{-30} C.m##.If we apply a static electric field of ##\mathcal { E }=1*10^{6 }V*m^{-1}## to an ammonia molecule initially in the state ## |ψG⟩## where the nitrogen molecule is considered to be on the left,we make it oscillate between states ##|ψ+⟩## and ##|ψ−⟩ ##which represent two wavefunctions.What is the angular frequency of oscillation between the two states ?

Homework Equations


In the ##(|ψ+⟩ ,|ψ−⟩)## basis:
##\hat { H } _ { \mathrm { tot. } } = \hat { H } _ { 0 } + \hat { W } = \frac { \hbar \omega _ { 0 } } { 2 } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) - d _ { 0 } \mathcal { E } \left( \begin{array} { l l } { 0 } & { 1 } \\ { 1 } & { 0 } \end{array} \right)##
We can put the hamiltonian in a simple form : ##\hat { H } _ { t o t } = - \frac { \hbar \Omega } { 2 } \left( \begin{array} { c c } { \cos 2 \theta } & { \sin 2 \theta } \\ { \sin 2 \theta } & { - \cos 2 \theta } \end{array} \right)## with ##\tan 2 \theta = \frac { 2 d _ { 0 } \mathcal { E } } { \hbar \omega _ { 0 } } \quad - \pi / 4 < \theta < \pi / 4## et ##\omega _ { 0 }=160*10^9 Hz##[/B]
##( \frac { \hbar \Omega } { 2 } ) ^ { 2 } = ( \frac { \hbar \omega _ { 0 } } { 2 }) ^ { 2 } + ( d _ { 0 } \mathcal { E } ) ^ { 2 }## so the angular frequency is ##
\Omega=\frac { 2 } { \hbar }\sqrt{( \frac { \hbar \omega _ { 0 } } { 2 }) ^ { 2 } + ( d _ { 0 } \mathcal { E } ) ^ { 2 }}
##

The Attempt at a Solution


By using the given values I find that ##\Omega=188000000000 \; rad.s^{-1}##.Is it correct ?

Thank you[/B]
 
Last edited:
Physics news on Phys.org
Is ω0 in Hz or rad/s?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
24
Views
2K
Replies
19
Views
3K
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K