Angular momentum of rotating hoop

AI Thread Summary
The discussion addresses the calculation of angular momentum for a rotating hoop, highlighting a problem with the initial setup due to a lack of clarity on the reference point for the calculation. The user presents their own calculation, noting that they initially misused the angular velocity vector and neglected the z-axis rotation. They arrive at a corrected angular momentum value of MR^2 Ω (3/2 k - 2 j), which differs from the official solution by a specific term. The discrepancy is attributed to the choice of origin, which is offset from that used in the official solution. The conversation emphasizes the importance of accurately defining the point of reference in angular momentum calculations.
BroPro
Messages
2
Reaction score
0
Homework Statement
Hi! See attached below a question from Kleppner's Intro to Mechanics. I calculated the angular momentum using ##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##, where ##\mathbf L_{cm}## is the angular momentum about the center of mass, but I got a different answer than the official solution.
I think both answers are correct: I calculated the angular momentum about the origin showed in the diagram, while (I think) the official solution implicitly calculated the angular momentum about the point of contact between the axle and the z axis. Is this correct? Yet it's strange for me that the angular momentum on the y axis cancels out: is this a mistake on my part, or really what happens? Why does it cancel out?
Relevant Equations
##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##
Problem:
2023-12-02 12_31_10-Physics 1 - An Introduction to Mechanics Kleppner, Kolenkow 2nd Edition.pd...png

Official solution:
2023-12-02 12_49_25-Physics 1 - An Introduction to Mechanics Kleppner, Kolenkow 2nd Edition So...png

My calculation:
\begin{align*}
\mathbf L &= M \mathbf R \times \mathbf V + \mathbf L_{cm} \\
&= M R (\hat j + \hat k) \times (- \Omega R \hat i) + MR^2 \Omega \hat j \\
&= MR^2 \Omega (\hat k - \hat j + \hat j) \\
&= MR^2 \Omega \hat k
\end{align*}
 
Physics news on Phys.org
The problem is ill posed since it fails to specify with respect to which point the angular momentum should be computed and the center of mass is not stationary.
 
I've realized the answer on my own, posting it here.
I've been blindly using the ##\mathbf \omega _s## vector of the official solution, but I've realized it should point in the opposite direction to negative y. Also, in my calculation of ##\mathbf L_{cm}## I've neglected the z axis rotation of the hoop, giving the correct angular momentum of
$$\mathbf L = MR^2 \Omega (\frac{3}{2}\hat k - 2 \hat j)$$
This value is off by ##-MR^2 \Omega \hat j## from the official answer of (with correction of the sign) ##\mathbf L = MR^2 \Omega (\frac{3}{2}\hat k - \hat j)##, which makes sense because my origin is off by $R$ from the origin used in the offical solution.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top