MHB Angular speed of 2 pulleys on a belt

Click For Summary
The discussion focuses on calculating the angular speed of two pulleys connected by a belt, with radii of 15 cm and 8 cm. The larger pulley rotates 25 times in 36 seconds, resulting in an angular speed of approximately 4.36 radians per second. Since the pulleys are linked by a belt, their linear velocities are equal, allowing the use of the formula v = rω to find the angular speed of the smaller pulley. By applying the relationship between the radii and angular speeds, the angular speed of the 8 cm pulley is calculated to be approximately 8.24 radians per second. The calculations demonstrate the principles of rotational motion and the relationship between radius and angular speed.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
two pulleys connected by a belt have 15cm and 8cm radius

The larger pulley rotates $25$ times in $36$ sec,

Find the angular speed of each pulleey in radians per second.

the 15cm pulley has circumferce of $30\pi$ so

$\displaystyle\frac{25\text { rev}}{36 \text {sec}}
\cdot\frac{30\pi\text{ cm}}{ rev}
=\frac{750\text{ cm\pi}}{36\text {sec}}
=\frac{65.5\text{ cm}\text{ rad}}{\text{sec}}$

not sure how to get the v of the $$ 8cm $$ pulley
 
Last edited:
Mathematics news on Phys.org
Re: angular speed of 2 pulleys on a belt

This is how I would work the first part:

$$\frac{25\text{ rev}}{36\text{ s}}\cdot\frac{2\pi\text{ rad}}{1\text{ rev}}=\frac{25}{18}\pi\frac{\text{rad}}{\text{s}}$$

Angular speed should have units of radians/time.

Since the pulleys are connected by a belt, then the linear velocity of the outer edge of each pulley will be the same:

$$v_2=v_1$$

Using, $$v=r\omega$$, we may state:

$$r_2\omega_2=r_1\omega_1$$

Solve for $$\omega_2$$:

$$\omega_2=\frac{r_1}{r_2}\omega_1$$

Now let $$r_1=15\text{ cm},\,r_2=8\text{ cm},\,\omega_1=\frac{25}{18}\pi\frac{ \text{rad}}{\text{s}}$$

What do you find?
 
Re: angular speed of 2 pulleys on a belt

$\displaystyle\frac{15}{8}\cdot\frac{25}{18}\pi \text{ = } \frac{125}{48}\pi\ \frac{\text{rad}}{s}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K