Angular Velocity from KE, radius, and mass

AI Thread Summary
The discussion focuses on calculating the angular velocity of a rod with a given rotational kinetic energy. The initial equation used, w^2 = (4*K)/(mr^2), was deemed incorrect by the user. To solve the problem accurately, the moment of inertia (I) must be correctly defined, particularly for a uniform rod, which is I = (1/3)mr^2. The correct approach involves using the rotational kinetic energy formula KE = (1/2)Iω^2 and ensuring proper unit conversions to obtain the angular velocity in rpm. Clarity in calculations and the correct application of relevant equations are essential for arriving at the right answer.
aivilo775
Messages
5
Reaction score
0
Homework Statement
A 45-cm-long, 95 g rod rotates about an axle at one end of the rod. At what angular velocity, in rpm , does the rod have 50 mJ of rotational kinetic energy?
Relevant Equations
Not given
I tried using the equation w^2 = (4*K)/(mr^2) but I don't think this is right... I got my answer to be 3.2243 and that's not correct
 
Physics news on Phys.org
aivilo775 said:
Homework Statement::
A 45-cm-long, 95 g rod rotates about an axle at one end of the rod. At what angular velocity, in rpm , does the rod have 50 mJ of rotational kinetic energy?
Relevant Equations:: Not given

I tried using the equation w^2 = (4*K)/(mr^2) but I don't think this is right... I got my answer to be 3.2243 and that's not correct
Hello @aivilo775 ,

:welcome:

Under Relevant Equations, you should supply whatever equations are relevant to your problem, such as: ##KE=(1/2)I\omega^2##
for the problem you posted.

Also of importance is what you use to get the moment of inertia, ##I## .

You need to be more detailed as to how you obtained your result. Also be careful with units and define symbols.
 
  • Like
Likes PhDeezNutz and topsquark
Screen Shot 2022-10-26 at 9.54.32 PM.png

This is the math I did when I rearranged
Screen Shot 2022-10-26 at 9.54.47 PM.png
to solve for w, angular velocity. I used I = mr^2. I got w = 2.27995. The units would be the sqrt of(J /kg*m^2), which ends up just being 1/sec. to get the answer in rpm, I figured I would multiply w by 60sec (to get w = 136.797, but this wasn't right
 
Please use LaTeX to write your equations in symbolic form. It is not at all clear what the numbers you posted in #3 are all about. Also, what is the moment of inertia of the rod? Look it up.
 
aivilo775 said:
I used I = mr^2
It's a uniform rod, not a point mass.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top