Undergrad Anomalous contribution to galactic rotation curves due to stochastic s

  • Thread starter Thread starter kodama
  • Start date Start date
  • Tags Tags
    Curves Rotation
Click For Summary
The discussion explores a novel approach to understanding galactic rotation curves by treating the spacetime metric as classical while keeping matter fields quantum. This framework introduces stochastic behavior in the metric, leading to modifications of general relativity, particularly in low acceleration scenarios. The high variance in gravitational acceleration compared to the Newtonian potential results in an entropic force that mimics additional matter distribution, potentially explaining galactic rotation without invoking dark matter. The authors emphasize the need for further research, particularly numerical simulations, to validate these findings and provide a method for detecting deviations from general relativity. The proposed model offers a fresh perspective on phenomena like Modified Newtonian Dynamics (MOND) and highlights the implications of stochastic spacetime on astrophysical observations.
kodama
Messages
1,083
Reaction score
144
TL;DR
stochastic cosmological constant can explain galactic rotation curves without needing to evoke dark matter
Anomalous contribution to galactic rotation curves due to stochastic spacetime
Jonathan Oppenheim, Andrea Russo
Subjects: General Relativity and Quantum Cosmology (gr-qc); Astrophysics of Galaxies (astro-ph.GA); High Energy Physics - Theory (hep-th)


We consider a proposed alternative to quantum gravity, in which the spacetime metric is treated as classical, even while matter fields remain quantum. Consistency of the theory necessarily requires that the metric evolve stochastically. Here, we show that this stochastic behaviour leads to a modification of general relativity at low accelerations.
In the low acceleration regime, the variance in the acceleration produced by the gravitational field is high in comparison to that produced by the Newtonian potential, and acts as an entropic force, causing a deviation from Einstein's theory of general relativity. We show that in this "diffusion regime", the entropic force acts from a gravitational point of view, as if it were a contribution to the matter distribution.
We compute how this modifies the expectation value of the metric via the path integral formalism, and find that an entropic force driven by a stochastic cosmological constant can explain galactic rotation curves without needing to evoke dark matter. We caution that a greater understanding of this effect is needed before conclusions can be drawn, most likely through numerical simulations, and provide a template for computing the deviation from general relativity which serves as an experimental signature of the Brownian motion of spacetime. arXiv:2402.19459 [pdf, other]

another way to explain MOND in comparison to that produced by Deur self interactions with GR

how plausible ?
 
Last edited:
Physics news on Phys.org
Do you have a link to the paper?
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...

Similar threads

Replies
14
Views
4K
  • · Replies 72 ·
3
Replies
72
Views
10K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 264 ·
9
Replies
264
Views
22K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K