I Anomalous contribution to galactic rotation curves due to stochastic s

  • I
  • Thread starter Thread starter kodama
  • Start date Start date
  • Tags Tags
    Curves Rotation
kodama
Messages
1,074
Reaction score
144
TL;DR Summary
stochastic cosmological constant can explain galactic rotation curves without needing to evoke dark matter
Anomalous contribution to galactic rotation curves due to stochastic spacetime
Jonathan Oppenheim, Andrea Russo
Subjects: General Relativity and Quantum Cosmology (gr-qc); Astrophysics of Galaxies (astro-ph.GA); High Energy Physics - Theory (hep-th)


We consider a proposed alternative to quantum gravity, in which the spacetime metric is treated as classical, even while matter fields remain quantum. Consistency of the theory necessarily requires that the metric evolve stochastically. Here, we show that this stochastic behaviour leads to a modification of general relativity at low accelerations.
In the low acceleration regime, the variance in the acceleration produced by the gravitational field is high in comparison to that produced by the Newtonian potential, and acts as an entropic force, causing a deviation from Einstein's theory of general relativity. We show that in this "diffusion regime", the entropic force acts from a gravitational point of view, as if it were a contribution to the matter distribution.
We compute how this modifies the expectation value of the metric via the path integral formalism, and find that an entropic force driven by a stochastic cosmological constant can explain galactic rotation curves without needing to evoke dark matter. We caution that a greater understanding of this effect is needed before conclusions can be drawn, most likely through numerical simulations, and provide a template for computing the deviation from general relativity which serves as an experimental signature of the Brownian motion of spacetime. arXiv:2402.19459 [pdf, other]

another way to explain MOND in comparison to that produced by Deur self interactions with GR

how plausible ?
 
Last edited:
Physics news on Phys.org
Do you have a link to the paper?
 
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top