Another Doubt From Halliday Resnick Krane -- Puck on a string in circular motion

Click For Summary
A puck on a frictionless table moves in a circular path due to a string attached to a hanging mass. The hanging mass creates tension in the string, which provides the necessary centripetal force for the puck's circular motion. An initial push is required to set the puck in motion, after which a steady state can be achieved without friction. The system relies on the balance between gravitational force on the hanging mass and the tension needed for circular motion. Understanding this relationship clarifies how the setup operates in a frictionless environment.
vibha_ganji
Messages
19
Reaction score
6
Thread moved from the technical forums to the schoolwork forums
Hello! This is a problem from Halliday Resnick Krane (Chapter 4: Problem #15). “A puck is moving in a circle of radius r0 with a constant speed v0 on a level frictionless table. A string is attached to the puck, which holds it in the circle; the string passes through a frictionless hole and is attached on the other end to a hanging object of mass M.” What I don’t understand is how this system works. How does hanging a heavy mass through a table make the mass m on the table spin in a circle?
 
Physics news on Phys.org
Someone has given it an initial push sideways to make it circle as described. After a small time, absent friction, a steady state can ensue.
 
The weight of the mass M causes tension in the string. The tension then acts as the centripetal force required for circular motion. As @hutchphd mentioned an initial push is required to start the circular motion.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K