Another fun logarithm integral

Click For Summary
SUMMARY

The integral $$\int^1_0 \frac{\log(t) \log(1-t)}{t} \, dt$$ evaluates to $$\zeta(3)$$, as established through integration by parts. The process involves the use of the polylogarithm functions, specifically $$\text{Li}_2(x)$$ and $$\text{Li}_3(x)$$, leading to the conclusion that $$\int^1_0 \frac{\log(x) \log(1-x)}{x}\, dx = \text{Li}_3(1) = \zeta(3)$$. This integral showcases the relationship between logarithmic integrals and the Riemann zeta function.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with logarithmic functions
  • Knowledge of polylogarithm functions, specifically $$\text{Li}_n$$
  • Basic calculus skills, particularly integration techniques
NEXT STEPS
  • Study the properties of the Riemann zeta function, particularly $$\zeta(3)$$
  • Learn about polylogarithm functions and their applications in integrals
  • Explore integration by parts in more complex integrals
  • Investigate series expansions and their convergence properties
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral calculus and its connections to number theory, particularly those studying the properties of the Riemann zeta function.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Here is a fun exercise to prove

$$\int^1_0 \frac{\log(t) \log(1-t)}{t} \, dt = \zeta(3)$$
 
Physics news on Phys.org
Here is a small hint

Try integration by parts
 
We can evaluate the definite integral

Integrating by parts we get the following

$$\int \frac{\log(x) \log(1-x)}{x}\, dx = -\text{Li}_2(x) \log(x) + \text{Li}_3(x) +C$$$$\int^1_0 \frac{\log(x) \log(1-x)}{x}\, dx = \text{Li}_3(1) = \zeta(3) $$
 
ZaidAlyafey said:
Here is a fun exercise to prove

$$\int^1_0 \frac{\log(t) \log(1-t)}{t} \, dt = \zeta(3)$$

In...

http://www.mathhelpboards.com/f49/integrals-natural-logarithm-5286/

... is reported that if...

$$ f(x) = \sum_{k=0}^{\infty} a_{k}\ x^{k}\ (1)$$

... then...

$$\int_{0}^{1} f(x)\ \ln^{n} x\ d x = (-1)^{n} n!\ \sum_{k=0}^{\infty} \frac{a_{k}}{(k+1)^{n+1}}\ (2)$$

In this case is n=1 and $\displaystyle a_{k}= - \frac{1}{k+1}$, so that...

$$\int_{0}^{1} \frac{\ln (1-x)}{x}\ \ln x\ dx = \zeta (3)\ (3)$$

Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K