MHB Another Limit, without L'hospital rule

  • Thread starter Thread starter Chipset3600
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion focuses on finding the limit of the expression (5^x - 25)/(x - 2) as x approaches 2 without using L'Hôpital's rule. The solution involves substituting x - 2 with y, leading to a transformation that incorporates the natural logarithm of 5. By further substituting y with z = y ln(5), the limit simplifies to a fundamental limit involving e^z. Ultimately, the result of the limit is determined to be 25 ln(5). The participants express gratitude for the clarification and successful resolution of the problem.
Chipset3600
Messages
79
Reaction score
0
Hello MHB, i can't hv success with this limit, help me please:
\lim_{x->2}\frac{5^{x}-25}{x-2}
 
Physics news on Phys.org
Chipset3600 said:
Hello MHB, i can't hv success with this limit, help me please:
\lim_{x->2}\frac{5^{x}-25}{x-2}

Setting $x-2=y$ You obtain...

$\displaystyle \frac{5^{x}-25}{x-2} = \frac{5^{2+y}-5^{2}}{y}= 5^{2}\ \frac{5^{y}-1}{y} = 5^{2}\ \ln 5\ \frac{e^{y\ \ln 5} -1} {y\ \ln 5}$ (1)

and setting $z= y\ \ln 5$ You arrive at the limit...

$\displaystyle \lim_{z \rightarrow 0} 5^{2}\ \ln 5\ \frac{e^{z}-1}{z}$ (2)

... who contains a 'fundamental limit'...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Setting $x-2=y$ You obtain...

$\displaystyle \frac{5^{x}-25}{x-2} = \frac{5^{2+y}-5^{2}}{y}= 5^{2}\ \frac{5^{y}-1}{y} = 5^{2}\ \ln 5\ \frac{e^{y\ \ln 5} -1} {y\ \ln 5}$ (1)

and setting $z= y\ \ln 5$ You arrive at the limit...

$\displaystyle \lim_{z \rightarrow 0} 5^{2}\ \ln 5\ \frac{e^{z}-1}{z}$ (2)

... who contains a 'fundamental limit'...

Kind regards

$\chi$ $\sigma$

I can't understood ur z=yln(5)
 
Chipset3600 said:
I can't understood ur z=yln(5)

Simply You set $y\ \ln 5 = z$ and then insert z in (1)...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Simply You set $y\ \ln 5 = z$ and then insert z in (1)...

Kind regards

$\chi$ $\sigma$

where it came from this ln(5)?
 
Chipset3600 said:
where it came from this ln(5)?

Is $\displaystyle 5^{y}= e^{y\ \ln 5}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is $\displaystyle 5^{y}= e^{y\ \ln 5}$...

Kind regards

$\chi$ $\sigma$

Now i understood, nd i find the result 25ln(5). Thank you :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K