MHB Answer: Anti-Symmetric Matrix: Necessary 0's Diagonal?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix
Yankel
Messages
390
Reaction score
0
Hello

I have a small question. Is it necessary for an anti-symmetric matrix to have a 0's diagonal ?

I have this question about the dimension of 2x2 symmetric matrices vs. dimension of anti-symmetric 2x2 matrices.

The solution is that the dim(symmetric) is 3 while dim(anti-symmetric) is 1, illustrated by a matrix with a zero diagonal.

anti-symmetric is when A=-transpose(A), will only a 0's diagonal satisfy this ?

thanks !
 
Physics news on Phys.org
Think of this in terms of what must be on the main diagonal. You know that for an anti-symmetric matrix, $\mathbf{A}=-\mathbf{A}^{T}$. In an element-by-element fashion, you would write $A_{ij}=-A_{ji}$. But for elements on the main diagonal, $i=j$, and hence you'd have to have $A_{ii}=-A_{ii}$. What numbers do you know of that satisfy $x=-x$?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top