MHB Answer: Anti-Symmetric Matrix: Necessary 0's Diagonal?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
An anti-symmetric matrix must have a zero diagonal because, by definition, it satisfies the condition A = -A^T. This implies that for diagonal elements, A_ii must equal -A_ii, which can only hold true if A_ii is zero. The discussion highlights the dimensional differences between symmetric and anti-symmetric matrices, noting that the dimension of 2x2 symmetric matrices is 3, while that of anti-symmetric matrices is 1. Therefore, the presence of zeros on the diagonal is a necessary characteristic of anti-symmetric matrices. Understanding this property is crucial for grasping the structure of such matrices.
Yankel
Messages
390
Reaction score
0
Hello

I have a small question. Is it necessary for an anti-symmetric matrix to have a 0's diagonal ?

I have this question about the dimension of 2x2 symmetric matrices vs. dimension of anti-symmetric 2x2 matrices.

The solution is that the dim(symmetric) is 3 while dim(anti-symmetric) is 1, illustrated by a matrix with a zero diagonal.

anti-symmetric is when A=-transpose(A), will only a 0's diagonal satisfy this ?

thanks !
 
Physics news on Phys.org
Think of this in terms of what must be on the main diagonal. You know that for an anti-symmetric matrix, $\mathbf{A}=-\mathbf{A}^{T}$. In an element-by-element fashion, you would write $A_{ij}=-A_{ji}$. But for elements on the main diagonal, $i=j$, and hence you'd have to have $A_{ii}=-A_{ii}$. What numbers do you know of that satisfy $x=-x$?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
Replies
2
Views
2K