# Antenna Reciprocity

#### Dave9600

Could someone give me a quick explanation of antenna reciprocity and if/how antenna gain can increase RX sensitivity? Thanks.

Related Electrical Engineering News on Phys.org

#### berkeman

Mentor
Could someone give me a quick explanation of antenna reciprocity and if/how antenna gain can increase RX sensitivity? Thanks.
Welcome to the PF Dave. Reciprocity just means that the gain pattern of an antenna will be the same whether it is receiving or transmitting. So if you transmit a test signal and map out the gain pattern in the far field of the antenna, then this tells you the receive gain pattern as well. Here's an intro to antennas:

So yes, if you have an antenna with TX gain, it will have the same gain in the RX direction. A multi-element Yagi antenna has gain for both TX and RX, for example.

#### Dave9600

Welcome to the PF Dave. Reciprocity just means that the gain pattern of an antenna will be the same whether it is receiving or transmitting. So if you transmit a test signal and map out the gain pattern in the far field of the antenna, then this tells you the receive gain pattern as well. Here's an intro to antennas:

So yes, if you have an antenna with TX gain, it will have the same gain in the RX direction. A multi-element Yagi antenna has gain for both TX and RX, for example.
Thanks.

I guess what I'm really asking is how does gain increase the distance at which you can receive, loss being what it is in free space? As an example: -80dB is -80dB at the antenna whether you're receiving on an omni-directional antenna or a high-gain Yagi. If there is enough signal to reach your antenna what difference does RX gain really make? Maybe I'm misunderstanding gain?

#### berkeman

Mentor
Thanks.

I guess what I'm really asking is how does gain increase the distance at which you can receive, loss being what it is in free space? As an example: -80dB is -80dB at the antenna whether you're receiving on an omni-directional antenna or a high-gain Yagi. If there is enough signal to reach your antenna what difference does RX gain really make? Maybe I'm misunderstanding gain?
Gain gives you a bigger RX signal for a given signal power. So if you have two antennas, where the 2nd antenna has a 3dBi gain over the first, then the RX signal will be 3dB higher for the 2nd antenna. This lets you receive signal sources that are farther away.

#### Dave9600

Gain gives you a bigger RX signal for a given signal power. So if you have two antennas, where the 2nd antenna has a 3dBi gain over the first, then the RX signal will be 3dB higher for the 2nd antenna. This lets you receive signal sources that are farther away.
Okay, so what you're saying is that I would now be able to receive a signal which is -83dB where before I could only receive a signal of -80db because the antenna is "creating" 3dB of signal?

I don't mean to sound ignorant. Thanks for your patience.

#### rbj

Reciprocity just means that the gain pattern of an antenna will be the same whether it is receiving or transmitting. So if you transmit a test signal and map out the gain pattern in the far field of the antenna, then this tells you the receive gain pattern as well.
that is true, berk, except for the word "just", i think. i think that if you have a pair of antennae, one for receiving and one for transmitting, that the power "gain" (it's really a big loss) using antenna A as the transmitter and B as the receiver, from terminals to terminals, is the same as if you switched them around and used antenna B as the transmitter and A as the receiver.

#### berkeman

Mentor
that is true, berk, except for the word "just", i think. i think that if you have a pair of antennae, one for receiving and one for transmitting, that the power "gain" (it's really a big loss) using antenna A as the transmitter and B as the receiver, from terminals to terminals, is the same as if you switched them around and used antenna B as the transmitter and A as the receiver.
Good point, your are correct. Glad that you pointed that out, rbj.

Dave9600 said:
Okay, so what you're saying is that I would now be able to receive a signal which is -83dB where before I could only receive a signal of -80db because the antenna is "creating" 3dB of signal?
Correct. Remember, an antenna that has gain over 0dBi in some direction, will have gain less than 0dBi in other directions. There is no free energy here -- maybe that is the part that has you a little uneasy. If you look down on a horizontal dipole antenna, for example, you have gain in the direction perpendicular to the dipole elements, and you have practically no gain (negative many dBi) in the direction parallel to the elements. What you gain has to come from somewhere. Was that part of your confusion?

#### Dave9600

Correct. Remember, an antenna that has gain over 0dBi in some direction, will have gain less than 0dBi in other directions. There is no free energy here -- maybe that is the part that has you a little uneasy. If you look down on a horizontal dipole antenna, for example, you have gain in the direction perpendicular to the dipole elements, and you have practically no gain (negative many dBi) in the direction parallel to the elements. What you gain has to come from somewhere. Was that part of your confusion?
No, it's always made sense to me that an antenna "creates" TX gain by conserving energy. It's never made sense to me how an antenna "creates" RX gain.

Okay, so the same physical properties of the antenna that conserve energy (directors, reflectors, etc.), thereby creating TX gain, also increase RX gain by conserving energy in the opposite direction? Is this correct?

#### berkeman

Mentor
Okay, so the same physical properties of the antenna that conserve energy (directors, reflectors, etc.), thereby creating TX gain, also increase RX gain by conserving energy in the opposite direction? Is this correct?
Yes. The reflector/director elements are a good way to think about this. Just picture a parabolic dish, for example, where you can make a dish that is several wavelengths across or more. There it's a lot more obvious how the act of reflection is providing gain.

#### Dave9600

Yes. The reflector/director elements are a good way to think about this. Just picture a parabolic dish, for example, where you can make a dish that is several wavelengths across or more. There it's a lot more obvious how the act of reflection is providing gain.
Thanks. It makes perfect sense now. I have a problem thinking backwards sometimes.

#### Dave9600

Okay, I'm going to add to this...

Let's say I have an antenna that the manufacturer states has a vertical beamwidth of 30 degrees. Isn't the vertical beamwidth going to change depending on the amount of power applied to the antenna? Or am I misunderstanding antenna propagation patterns? Maybe propagation is limited by the physical characteristics of the antenna and the half-power points on the main lobe will always be the same regardless of applied power?

I guess I'm confused as to what a propagation pattern actually shows me.

#### rbj

No, it's always made sense to me that an antenna "creates" TX gain by conserving energy. It's never made sense to me how an antenna "creates" RX gain.

Okay, so the same physical properties of the antenna that conserve energy (directors, reflectors, etc.), thereby creating TX gain, also increase RX gain by conserving energy in the opposite direction? Is this correct?
i think what is correct is that the RX antenna has increased gain (in the direction it is pointing) because with the other parasitic elements, it has an increased "aperture". it becomes a bigger net to scoop up radiant energy.

#### berkeman

Mentor
Maybe propagation is limited by the physical characteristics of the antenna and the half-power points on the main lobe will always be the same regardless of applied power?
That is correct. The antenna pattern is normalized, and is independent of TX power.

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving