Someone2841
- 43
- 6
Let an,m be defined for the non-negative integers n and m such that n ≥ m.
an,0 = 1
am,m = m!
an+1,m+1 = (m+1) * an,m + an,m+1
Is there an explicit formula f such that f(n,m) = an,m?
Here are the first numbers of the sequence:
<br /> <br /> \begin{align}<br /> &m&0&1&2&3&4\\<br /> n\\<br /> 0&&1\\<br /> 1&&1&1\\<br /> 2&&1&3&2\\<br /> 3&&1&6&11&6\\<br /> 4&&1&10&35&50&24\\<br /> 5&&1&5&85&225&274&12\\<br /> \end{align}<br /> <br />
an,0 = 1
am,m = m!
an+1,m+1 = (m+1) * an,m + an,m+1
Is there an explicit formula f such that f(n,m) = an,m?
Here are the first numbers of the sequence:
<br /> <br /> \begin{align}<br /> &m&0&1&2&3&4\\<br /> n\\<br /> 0&&1\\<br /> 1&&1&1\\<br /> 2&&1&3&2\\<br /> 3&&1&6&11&6\\<br /> 4&&1&10&35&50&24\\<br /> 5&&1&5&85&225&274&12\\<br /> \end{align}<br /> <br />