MHB What is the Absolute Maximum Value of f in the Function f(x) = ln(x)/x?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Absolute Max
Click For Summary
SUMMARY

The absolute maximum value of the function f(x) = ln(x)/x occurs at x = e, yielding a maximum value of 1/e. This conclusion is reached through both graphical analysis and calculus, specifically by applying the first derivative test to identify critical points and the second derivative test to confirm the nature of the maximum. The first derivative f’(x) = (1 - ln(x))/x² indicates that f(x) is increasing on the interval (0, e) and decreasing on (e, ∞), confirming that f(e) = 1/e is indeed the absolute maximum.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Knowledge of calculus, specifically differentiation and critical points
  • Familiarity with first and second derivative tests
  • Ability to analyze function behavior through graphical methods
NEXT STEPS
  • Study the properties of logarithmic functions in depth
  • Learn about optimization techniques using calculus
  • Explore the application of the first and second derivative tests in various contexts
  • Practice graphing functions to identify maxima and minima visually
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and optimization, as well as anyone preparing for exams involving function analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{22. Let f be the function defined by $f(x)=\dfrac{\ln x}{x}$ What is the absolute maximum value of f ? }$
$$(A)\, 1\quad (B)\, \dfrac{1}{e} (C)\, 0 \quad (D) -e \quad (E)
f\textit{ does not have an absolute maximum value}.$$

I only guessed this by graphing it and it appears to $\dfrac{1}{e}$ which is (B)
 
Physics news on Phys.org
karush said:
$\text{22. Let f be the function defined by $f(x)=\dfrac{\ln x}{x}$ What is the absolute maximum value of f ? }$
$$(A)\, 1\quad (B)\, \dfrac{1}{e} (C)\, 0 \quad (D) -e \quad (E)
f\textit{ does not have an absolute maximum value}.$$

I only guessed this by graphing it and it appears to $\dfrac{1}{e}$ which is (B)
Why would graphing be a guess? It's a valid Mathematical tool!

You could do this by taking the derivative of f(x) and finding the critical points, etc. But if you have this question on an exam the simplest (and probably fastest) way is to take a look at each answer and see what you get. D) is out because f(x) takes on positive values, and A), C), and E) are out by looking at the graph. That leaves B).

-Dan
 
$f’(x)=\dfrac{x \cdot \frac{1}{x} - \ln{x} \cdot 1}{x^2} = \dfrac{1-\ln{x}}{x^2}$

$f’(x)=0$ at $x=e$

first derivative test ...

$x < e \implies f’(x) > 0 \implies f(x) \text{ increasing over the interval } (0,e)$

$x > e \implies f’(x) < 0 \implies f(x) \text{ decreasing over the interval } (e, \infty)$

conclusion ... $f(e) = \dfrac{1}{e}$ is an absolute maximum.

second derivative test ...

$f’’(x) = \dfrac{x^2 \cdot \left(-\frac{1}{x} \right) - (1-\ln{x}) \cdot 2x}{x^4} = \dfrac{2\ln{x} - 3}{x^3}$

$f’’(e) = -\dfrac{1}{e^3} < 0 \implies f(e) = \dfrac{1}{e}$ is a maximum.
 
wow that was a lot of help..

yes the real negative about these assessment tests is how fast you can eliminate possible answers
not so much what math steps are you really need to take

actually I am learning a lot here at MHB
Mahalo
 
The first or second derivative tests show that this is a maximum but do not show that it is an absolute maximum. We do that by observing that this is the only critical point and that the limits, as x goes to infinity or negative infinity are 0.
 

Attachments

  • MeWe.PNG
    MeWe.PNG
    730 bytes · Views: 140
Last edited:
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K