Apc.9.3.1 solution to the differential equation condition

Click For Summary
SUMMARY

The solution to the differential equation condition $$\dfrac{dy}{dx}=2\sin x$$ with the initial condition $$y(\pi)=1$$ is determined through integration. The integration yields $$y=-2\cos{x}+C$$. By substituting the initial condition, it is concluded that the constant C equals -1, leading to the final solution $$y=-2\cos{x}-1$$. This solution corresponds to option e.

PREREQUISITES
  • Understanding of differential equations
  • Knowledge of integration techniques
  • Familiarity with trigonometric functions
  • Ability to apply initial conditions to solutions
NEXT STEPS
  • Study integration methods for solving differential equations
  • Learn about initial value problems in differential equations
  • Explore the properties of trigonometric functions in calculus
  • Investigate the applications of differential equations in real-world scenarios
USEFUL FOR

Students, educators, and professionals in mathematics, particularly those focusing on calculus and differential equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
253 Which of the following is the solution to the differential equation condition
$$\dfrac{dy}{dx}=2\sin x$$
with the initial condition
$$y(\pi)=1$$
a. $y=2\cos{x}+3$
b. $y=2\cos{x}-1$
c. $y=-2\cos{x}+3$
d. $y=-2\cos{x}+1$
e. $y=-2\cos{x}-1$

integrate
$y=\displaystyle\int 2\sin x\, dx =-2\cos(\pi)+C$
then plug in $y(\pi)=1$
$-2\cos(\pi)+C=1
\Rightarrow
-2(-1)+C=1
\Rightarrow
C=-1$
therefore
$y=-2\cos(\pi)-1$
which is etypos maybe!
 
Last edited:
Physics news on Phys.org
karush said:
253 Which of the following is the solution to the differential equation condition
$$\dfrac{dy}{dx}=2\sin x$$
with the initial condition
$$y(\pi)=1$$
a. $y=2\cos{x}+3$
b. $y=2\cos{x}-1$
c. $y=-2\cos{x}+3$
d. $y=-2\cos{x}+1$
e. $y=-2\cos{x}-1$

integrate
$y=\displaystyle\int 2\sin x\, dx =\color{red}-2\cos{x}+C$
then plug in $y(\pi)=1$
$-2\cos(\pi)+C=1
\Rightarrow
-2(-1)+C=1
\Rightarrow
C=-1$
therefore
$\color{red}y=-2\cos{x}-1$
which is etypos maybe!

​yep
 
:cool:
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K