Apostol question about the differential equations of a falling object

Click For Summary
The discussion focuses on solving the differential equations related to the motion of a falling object, specifically deriving the relationship between displacement (s) and velocity (v). The user presents their integration process to express s in terms of v, leading to an equation involving logarithmic functions. They express uncertainty about the correctness of their derived relationship and seek guidance on verifying their results against previously established equations for v and s as functions of time (t). The conversation highlights the challenge of checking their findings with the equations from a cited example and the complexities involved in the algebraic manipulations. Ultimately, the user is looking for clarity on how to validate their results within the context of the problem.
zenterix
Messages
774
Reaction score
84
Homework Statement
Refer to example 2 of section 8.6. Use the chain rule to write

$$\frac{dv}{dt}=\frac{ds}{dt}\frac{dv}{ds}=v\frac{dv}{ds}$$

and thus show that the differential equation in the example can be expressed as follows

$$\frac{ds}{dv}=\frac{bv}{c-v}$$

where ##b=m/k## and ##c=gm/k##. Integrate this equation to express ##s## in terms of ##v##. Check your result with the formulas for ##v## and ##s## derived in the example
Relevant Equations
The cited example 2 is a bit large to be shown here in all its steps.

Here are the main points and equations.

A body of mass ##m## is dropped from rest from a great height in the earth's atmosphere. Assume it falls in a straight line and that the only forces acting on it are the earth's gravitational attraction and a resisting force due to air resistance which is proportional to its velocity.

Newton's second law tells us

$$ma=mg-kv$$

where ##k## is some positive constant and ##-kv## is the force due to air resistance.

$$mv'=mg-kv$$

is a first-order equation in velocity ##v##.

We can write this in the form

$$v'+\frac{k}{m}v=g$$

which we can solve using an integrating factor to obtain (assuming v(0)=0)

$$v(t)=e^{-kt/m}\int_0^t ge^{ku/m}du=\frac{mg}{k}(1-e^{-kt/m})$$

we can differentiate to find acceleration

$$a(t)=ge^{-kt/m}$$

We can also integrate to obtain position

$$s(t)=\frac{mg}{k}t+\frac{gm^2}{k^2}e^{-kt/m}+C$$

and if ##s(0)=0## we have

$$s(t)=\frac{mg}{k}t+\frac{gm^2}{k^2}(e^{-kt/m}-1)$$
Here is my solution to this problem. Unfortunately, I can't check it because it is not contained in the solution manual.

$$\frac{dv}{dt}=\frac{dv}{ds}\frac{ds}{dt}=v\frac{dv}{ds}$$

$$\frac{ds}{dv}=\frac{v}{v'}=\frac{v}{ge^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}e^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}-\frac{gm}{k}+\frac{gm}{k}e^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}-\frac{gm}{k}(e^{-kt/m}-1)}$$

$$=\frac{bv}{c-v}$$

My main question is about the integration of this expression to obtain ##s## in terms of ##v##.

$$\int_0^v \frac{ds}{dv}dv=\int_{s(0)}^{s(v)} ds = s(v)-s(0)=\int_0^v\frac{bv}{c-v}dv$$

$$=bc(\ln{(c)}-\ln{(c-v)})-bv$$

$$s(v)=s(0)+bc(\ln{(c)}-\ln{(c-v)})-bv$$

I don't recall seeing this relationship very often and so I am not sure if this is correct. The problem says to check this result with the equations derived in the cited Example 2. But that example derived equations for ##v## and ##s## relative to ##t##. How would I go about using those equations to check my result of ##s## as a function of ##v##?
 
Physics news on Phys.org
I think the intention is to derive the ODE as <br /> ma = mv\frac{dv}{ds} = mg - kv so that <br /> \frac{ds}{dv} = \frac{mv}{mg - kv} = \frac{(m/k)v}{(mg/k) - v} = \frac{bv}{c - v}. Note that the solution to the earlier exercise can be written in the form \begin{split}<br /> v(t) &amp;= c(1 - e^{-b/t}) \\<br /> s(t) - s_0 &amp;= ct - bv(t).\end{split} To show that <br /> s(v) - s_0 = bc\ln|c| - bv - bc\ln|c - v| = ct - bv = s(t) - s_0 the easiest way is to solve v(t) for t to obtain \begin{split}<br /> e^{-t/b} &amp;= \frac{c - v}{c} \\<br /> t &amp;= b\ln|c| - b\ln|c - v|.\end{split}
 
Last edited:
Attached are the full calculations leaving ##v_0## as a variable (just for added suffering with the algebra). Unfortunately, I couldn't figure out a way to post it directly here (file either too large or too low quality).
 

Attachments

First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...