- #1
CGandC
- 326
- 34
- Homework Statement
- I want to find the function ## E(V,T) ##
- Relevant Equations
- It is known that
## \frac{\partial E}{\partial T} = \frac{B N^2}{ V} ##
## \frac{\partial E}{\partial V} = \frac{-B T N^2}{ V^2} ##
## E(T=0) = 0 ##
Where B, N are constants.
Attempt at solution:
Writing the chain rule for ## E(V,T) ##:
## dE = \frac{\partial E}{\partial T}dT + \frac{\partial E}{\partial V}dV ##
Then, integrating the differential:
## \int{ dE } = \int{ \frac{\partial E}{\partial T}dT } + \int{ \frac{\partial E}{\partial V}dV } ##
If I put the partial derivatives:
## \int{ dE } = \int{\frac{B N^2}{ V}dT } + \int{ \frac{-B T N^2}{ V^2}dV } ##
Then I get ( with using the condition ## E(T=0) = 0 ## ):
## E(T,V) = \frac{2BT N^2}{ V} ##
Why my method of finding E(T,V) by integrating over all partial derivatives at once is incorrect( as opposed to the solution below)?
________________________________________________________________________
The right solution is:
## E(T,V) = \frac{BT N^2}{ V} ##
Explanation for the right solution:
Integrating the following partial derivative:
## \frac{\partial E}{\partial V} = \frac{-B T N^2}{ V^2} ##
I get:
## E(T,V) = \frac{B T N^2}{ V} + C(T) ##
Using the condition ## E(T=0) = 0 ##, I get that:
## C(T) = 0 ##
Therefore:
## E(T,V) = \frac{B T N^2}{ V} ##
Writing the chain rule for ## E(V,T) ##:
## dE = \frac{\partial E}{\partial T}dT + \frac{\partial E}{\partial V}dV ##
Then, integrating the differential:
## \int{ dE } = \int{ \frac{\partial E}{\partial T}dT } + \int{ \frac{\partial E}{\partial V}dV } ##
If I put the partial derivatives:
## \int{ dE } = \int{\frac{B N^2}{ V}dT } + \int{ \frac{-B T N^2}{ V^2}dV } ##
Then I get ( with using the condition ## E(T=0) = 0 ## ):
## E(T,V) = \frac{2BT N^2}{ V} ##
Why my method of finding E(T,V) by integrating over all partial derivatives at once is incorrect( as opposed to the solution below)?
________________________________________________________________________
The right solution is:
## E(T,V) = \frac{BT N^2}{ V} ##
Explanation for the right solution:
Integrating the following partial derivative:
## \frac{\partial E}{\partial V} = \frac{-B T N^2}{ V^2} ##
I get:
## E(T,V) = \frac{B T N^2}{ V} + C(T) ##
Using the condition ## E(T=0) = 0 ##, I get that:
## C(T) = 0 ##
Therefore:
## E(T,V) = \frac{B T N^2}{ V} ##