Apparent depth of an object underwater

AI Thread Summary
The discussion focuses on determining the apparent depth of an object underwater using Snell's law and the approximation for small angles. The initial challenge involves finding the angles and the point along the water's surface where light exits to reach an observer's eye. After some calculations, the user arrives at a solution with the distance from the left corner being approximately 18 meters and an apparent depth of about 0.19 meters. The final confirmation indicates that the calculations are correct. This highlights the application of Snell's law in practical scenarios involving light refraction.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A person (the arrow at the upper left of the figure) of height ##h=1.7m## is standing at the edge of a pool of water of depth ##d=1.8m## in which there is an object located at the farthest end of the pool (black ball in the figure). What is the apparent depth of this object for the person looking at the pool, i.e. what is the depth of the object observed by the person (red ball in the figure)?
Relevant Equations
##n_1 \sin(\theta_1)=n_2\sin(\theta_2)##
I would know how to solve this problem if the person had been standing pratically above of the object underwater by using Snell's law and the approximation ##\sin(\theta)\approx\tan(\theta)## fopr ##\theta## small, but in this case I don't see how to find the angles ##\theta_1## and ##\theta_2## and, above all, at what point along the surface of the water the light with come out in such a way as to reach the eye of the person. Without this last information, when I try to set up Snell's law I get (with ##x## representing the distance from the left corner at which the light comes out): ## \frac{d^2+(L-x)^2}{d'^2+(L-x)^2}=1.33^2 ## but I have too many variables.

So, I would appreciate if someone could point me twoards a viable strategy to solve this problem. Thanks
 

Attachments

  • refraction.png
    refraction.png
    9.8 KB · Views: 123
Physics news on Phys.org
Find the two angles as functions of x.
 
haruspex said:
Find the two angles as functions of x.
Thanks. I got ##x\approx 18\ m## and an apparent depth of ##d'\approx 0.19\ m##.
 
lorenz0 said:
Thanks. I got ##x\approx 18\ m## and an apparent depth of ##d'\approx 0.19\ m##.
That looks right.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top