Read about refraction | 81 Discussions | Page 1

  1. F

    B Why does the amount of Refraction depend on wavelength?

    I understand that electrons of a material have a natural frequency of vibration and the refractive index results from the phase difference between the incident light's field oscillations and the field oscillations of these electrons...
  2. K

    I Size of a fish under water

    From This picture, I think the fish will be smaller but the problem is how small will it be? (Fish "L" is the image of fish "K") Let ##H## be the depth of fish "K", ##\theta## be the angle of eyes to y-axis and ##n## is the index of refraction of water.
  3. G

    B Internal reflection equation question

    As you can see we have 3 media here. Only focus on the glass and coating medium. Assume an incident ray comes from the air medium and is refracted inside the glass and then it is refracted again in the coating medium. The x angle is the angle inside the glass medium. In this case, if the...
  4. C

    B Size of a light beam before and after Refraction

    The size of light beam is same or different before and after refraction from a medium. If same then why we can not prove from mathematical expression. If not same why?
  5. Jaffer2020

    B Refraction of light -- What is the best description for 10th grade physics students?

    In my latest 10th grade physics lesson, we were learning about the refraction of light. I decided to share what I knew about why light slows down in a vacuum, which is, in short, because the electric field of the electromagnetic wave exerts a force on the charged electrons of a medium, which in...
  6. K

    Calculate the focal distance of the duplicate

    The picture below shows a so-called chromatic doublet, which is designed to minimize chromatic aberration, ie the wavelength dependence of the refractive index of the glass. The first lens has a flat first surface and a concave second surface with radius of curvature R and index of refraction n1...
  7. K

    Find the refractive index for the lens and find the image distance

    A thin lens has an upper radius of curvature 𝑅1 and a lower radius of curvature 𝑅2. When the lens is completely surrounded by air, it has a focal distance 𝑓. The lens is then placed in the interface between air and water inside a vessel (see figure). Calculate the refractive index for the glass...
  8. M

    Combination lens equation questions

    Homework Statement: Lens questions. Homework Equations: idk Hello, so I was wanting to use a laser beam and purchase a few lens' online for a project and wanted to get something similar to the image below, where i would end with a horizontal light ray i was wondering if anyone knows the...
  9. DPMF6973

    Index of refraction and wavelength

    The problem is multiple choice. A) refraction b) diffraction c) reflection d) dispersion An explanation would also be greatly appreciated!
  10. F

    The maximum intensity for light transmitted through a thin film

    Homework Statement A thin (460 nm) film of kerosene (n=1,20) is spread out on water (n = 1,30). Light hits the (horizontal) surface of the film coming (almost) perpendicularly from above. A diver underwater, below the film. a) Find out the visible wavelength reflected into air that has the...
  11. TachyonLord

    B Whats the principle behind Schuster Focusing?

    I know its something related to the asymmentry in the i-d curve but its still not clear.
  12. The proof of Snell’s law using springs - 3blue1brown

    The proof of Snell’s law using springs - 3blue1brown

    The law of light bending in matter. Also an important law for the proof of brachistochrone problem.
  13. S

    Dolphin Underwater Problem

    Homework Statement A scientist investigating the movements of dolphins in the Mediterranean uses a dart gun to shoot small, harmless tracking devices onto the fins of dolphins. When standing on deck, her hand is 1m above the water, and looking along the dart gun she is holding at an angle of...
  14. M

    The refractive index of an unknown liquid

    1. A light ray in dense flint glass that has an index of refraction of 1.655 is incident to the glass surface. An UNKNOWN liquid condenses on the glass's surface. Total internal reflection on the glass-liquid interface occurs for a minimum angle of incidence on the glass-liquid interface at...
  15. J

    How do I find the refractive index in sugar solutions?

    For class I conducted a experiment where I made sugar solutions, poured them into a glass prism container and used a laser pointer to find the refractive index. However, while typing in my results I realized I found the angle of deviation instead of the minimum angle of deviation since I didn't...
  16. C

    I Is there refraction upon frustrated total internal reflection

    In frustrated total internal reflection, is there refraction corresponding to the refractive index difference between the first and third medium or does the light continue in straight line as it is usually depicted in graphic representations of the frustrated total internal reflection?
  17. K

    I Atmospheric Refraction

    Does atmospheric refraction only work at certain temperatures, distances, and shape of the object (i.e. only spheres)?
  18. Lukejohn

    B How to state the laws of refraction and apply them to....

    How do i apply the laws of refraction to plane and curved surfaces. I have absolutely no idea how to even start on this one, its got nothing to do with the course, i am going to study. i need to understand this to move on but i genuinely have absolutely no interest in optics. I really can not...
  19. Nabin kalauni

    B What does coefficient of increase of physical quantity mean?

    I am extremely confused by the use of the term coefficient of increase of something. For example , if it is stated that the index of refraction varies linearly with a coefficient of 2.5×10^-5, how is this coefficient defined? Is it simply the slope of the line plotted with index of refraction on...
  20. harambe

    Bird-Fish refraction

    Homework Statement A vessel is filled with water of refractive index 4/3.The height of the vessel is 60cm.A fish F is at 40 cm below the surface of water.A bird B is 30cm above the surface of water.The bottom of the vessel behaves as plane mirror. How many images of fish will be seen by the...
  21. Muhammad Danish

    Reflection and Refraction formula help

    Homework Statement 2. Homework Equations 3. The Attempt at a Solution [/B] I tried to solve this question with the general formula n=sin i / sin r. 1.5 = sin 30/sin r, r = 19.4 = 19 which is option A. But option A is incorrect. Please guide me where am I wrong..
  22. T

    I Non Newtonian / Newtonian Fluid interface

    Suppose I have a wave tank partially filled with a shear thickening Newtonian fluid (Oobleck), on top of which sits a layer of water (separated by a thin membrane to prevent mixing) If I propagate a surface wave in the water layer how will it conduct itself at the Newtonian/Non Newtonian Fluid...
  23. D

    B Bend in a fiber optic cable

    If there is a fiber optic cable with a diameter d, the index of refraction of the cladding the cable is given, and so is the index of refraction core of the cable, how would you formulate an equation for the minimum radius of bend the cable can have? Thank you in advance.
  24. K

    B Does light refraction play a role in bubble iridescence?

    We know interference of waves play a role in causing "colors" on soap bubbles. But does light refraction play a role in bubble iridescence? When the light wave travels into the soap bubble surface, won't it refract since the wave is into a different matter (what matter the soap bubble surface...
  25. D

    I What properties allow me to see past Earth's curvature?

    I recently was able to view a 193 foot building from 24 miles away. The base of the building is approximately 15 feet above sea level and my eye level was approximately 9 feet above sea level. I was viewing the building across a Lake. I could see a substantial amount of the building, which...
  26. M

    B Effect of electrical permittivity on the speed of light?

    Why does an increased electrical permittivity reduce the phase velocity of light in a medium? Furthermore, what interactions do we see on an atomic level? I am aware of the equation that defines the speed of light in terms of the electrical permittivity and magnetic permeability, but I do not...
  27. R

    I Refractive index as a function of the concentration of a sugar solution

    We recently performed an experiment with the idea to find refractive index of medium (water) as a function of wavelength of light. We then added some sugar to see how the refractive index changes with concentration of sugar solution. We got the following graphs. Are the relationships...
  28. G

    I Overview of General Fresnel Equations + Complex IORs

    Hi, My understanding is that when light (with some frequency and polarization) hits the interface between two media (each with some frequency-dependent material properties), the Fresnel equations apply. This tells us how much light reflects back versus refracts across the interface. I'm...
  29. Z

    Using Snell's Law for Brachistochrone Project

    Hi all, I'm after a little guidance for I do not know what is going wrong. I understand that for Johann Bernoulli's proof of the brachistochrone problem he used refraction of light and Fermat's principle of least time. I have decided to do a project on the subject, in which I am dividing up a...
  30. Techno_Knight

    Refraction in Cylinder.

    Homework Statement A non-transclucent container in the form of a cylinder, has a diameter of 3.00 m, has its top part open, and is filled with water. When the sun created a 28.0 degree angle with the horizontal, the light doesn't illuminate the bottom of the container. What's the depth of the...
Top