# Application of Cauchy's formula for trigonometric integrals.

## Homework Statement

∫dθ/(1 + (sinθ)^2 ), [0, π]

## Homework Equations

Cauchy's Formula, perhaps Cauchy's Thm.
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/CauchyIntegralTheorem.html

## The Attempt at a Solution

I first substituted sinθ = (1/(2i))(z - 1/z), where z = e^(2iθ) to get the expression
∫4iz/(z^4 - 6z^2 + 1)dz with the path |z| = 1.

I found the zeros for the denominator, which are z^2 = 3 ± 2√(2), and so z = ±√(3 ± 2√(2)). Only the points ±√(3 - 2√(2)) are in |z|= 1.

I proceeded to use Cauchy's formula to get 0, however, I am not confident with my answer. There are several things that I did as a result of my unfamiliarity of domains other than [0, 2π] when it comes to application of Cauchy's formula. I am not sure I am allowed to use the substitute of z but if I don't then I do not believe we are considering a closed curve at all.

By the way, I am trying to find an answer in a specific way, I know there are other ways to solve this problem but my book says it can be done using something Cauchy related. I hope my question is well stated and thank you.

Related Calculus and Beyond Homework Help News on Phys.org
Dick
Homework Helper
The answer obviously isn't zero. The integrand is positive. The problem is that if z=exp(2i*theta), (z-1/z)/(2i)=sin(2*theta), not sin(theta). Start by using sin(x)^2=(1-cos(2x))/2. Now express cos(2x) in terms of z.

That doesn't actually help because you end with the same results. The denominator becomes (3 - cos(2θ)), which you can derive ∫4iz/(z^4 - 6z^2 + 1)dz from.

Thanks for the suggestion though.

Dick