According to the so called The 'argument principle', if f(*) is analytic in D and $\gamma$ is the 'frontier' of D, then the number of zeroes of f(*) in D is given by...
$\displaystyle n= \frac{1}{2\ \pi\ i}\ \int_{\gamma} \frac{f^{'}(z)}{f(z)}\ dz$ (1)
We consider $\displaystyle f(z)=z^{5}+2\ z^{3} -z^{2}+z-a$ and we set p the number of roots of f(*) with positive real part and q the number of roots of f(*) with negative real part. Of course is p+q=5. Now if we apply (1) and choose D as the 'big half circle tending to the left half plane' we obtain...
$\displaystyle q= \frac{1}{2\ \pi} \int_{- \infty}^{+ \infty} \frac{f^{'}(i\ y)}{f(i\ y)}\ dy = \frac{1}{2\ \pi} \int_{- \infty}^{+ \infty} \frac {(5\ y^{4} -6\ y^{2} +1) -2\ i\ y}{(y^{2}-a) +i\ (y^{5}-y^{3}+y)}\ dy$ (2)
The detail of computation of integral (2) are however 'a little complex' and that is 'postposed' to a successive post...