Applying Reisenbach Transf. to EM Wave in Microwave Oven

Click For Summary
SUMMARY

This discussion focuses on applying the Reisenbach transformation to electromagnetic waves in a microwave oven, specifically analyzing the behavior of standing waves under different synchronization conventions. The electromagnetic field tensor transforms according to the matrix equation $$\Lambda^T F^{\mu \nu} \Lambda$$, affecting the electric field components. The key conclusion is that the original standing wave configuration is altered, resulting in traveling waves with modified amplitudes and phases. The discussion emphasizes the implications of synchronization conventions on the perceived speed of light and wave behavior.

PREREQUISITES
  • Understanding of electromagnetic wave theory, specifically transverse waves.
  • Familiarity with the Reisenbach synchronization transformation and its mathematical representation.
  • Knowledge of wave mechanics, including standing and traveling waves.
  • Basic proficiency in tensor mathematics and transformations.
NEXT STEPS
  • Study the mathematical derivation of the Reisenbach transformation in detail.
  • Explore the implications of anisotropic light speed on electromagnetic wave propagation.
  • Investigate the relationship between electric and magnetic fields in electromagnetic waves.
  • Learn about the practical applications of standing waves in microwave technology.
USEFUL FOR

Physicists, electrical engineers, and students studying wave mechanics and electromagnetic theory will benefit from this discussion, particularly those interested in the effects of synchronization on wave behavior.

wnvl2
Messages
64
Reaction score
14
There is no possible measurement, no matter how clever, that can measure the one way speed of light. It is a synchronization convention. In this topic I would like to apply this idea on a specific case.

I have a microwave oven with width L. In this oven I have a standing wave.

$$E(t,x)=E cos(\omega t) sin( k x) $$

with ##k = \frac{\pi}{L}## and ##c = \frac{\omega}{k}##.

We can split this standing wave into a left and a right moving wave.

$$\frac{E}{2} sin (\omega t - kx) + \frac{E}{2} sin (\omega t + kx)$$

Now I want to see what happens if we switch to another synchronization where the speed of the right-moving wave is
##c^{+}## is ##\frac{c}{2\epsilon}## and the speed of the left moving wave ##c^{-}## is ##\frac{c}{2(1-\epsilon)}##.

The Reisenbach synchronisation transformation looks like

$$ \begin{bmatrix}
ct \\
x \\
y \\
z \\
\end{bmatrix} = \Lambda \begin{bmatrix}
ct' \\
x' \\
y' \\
z' \\
\end{bmatrix}$$

with $$ \Lambda = \begin{bmatrix}
1 & \kappa & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix} $$

and ##\kappa=2 \epsilon-1##

This means that the electromagnetic field tensor

$$F^{\mu \nu} = \begin{bmatrix}
0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c}\\
\frac{E_x}{c} & 0 & -B_z & B_y\\
\frac{E_y}{c} & B_z & 0 & -B_x\\
\frac{E_z}{c} & -B_y & B_x & 0\\
\end{bmatrix} $$

will transform according to

$$\Lambda^T F^{\mu \nu} \Lambda $$

This means that ##E_x## transforms into ##\kappa E_x##. I assume that in the xyz frame the magnetic field is everywhere 0.

The waves in the new frame x'y'z' transform into

$$\frac{\kappa E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) - kx') + \frac{E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) + kx')$$

$$\frac{\kappa E}{2} sin (\omega t'-(\omega\frac{\kappa}{c} - k)x') + \frac{E}{2} sin (\omega t'- (\omega \frac{\kappa}{c} + k)x')$$

A first conclusion is that I have not anymore a standing wave.

Is this reasoning already correct?
 
Last edited:
  • Like
Likes   Reactions: vanhees71 and Dale
Physics news on Phys.org
wnvl2 said:
Now I want to see what happens if we switch to another synchronization where the speed of the right-moving wave is
$c^{+}$ is $\frac{c}{2\epsilon}$ and the speed of the left moving wave $c^{-}$ is $\frac{c}{2(1-\epsilon)}^$.
I have no idea what kind of synchronization it is which let light waves have speed other than c.
 
Last edited:
Generally, coordinates in which light speed is anisotropic mean that your clocks are out of sync with respect to Einstein synchronised clocks. Simply applying the coordinate transform ##x'=x## and ##t'=t+\kappa x## I would expect ##\sin(\omega t)\sin(kx)## to transform to ##\sin(\omega(t'-\kappa x'))\sin(kx')##. So I suspect you will find you have nodes in the same place, but the wave will be a sine wave with some kind of position dependent phase function. I don't have pen and paper to work out if your result matches that.
 
  • Like
Likes   Reactions: vanhees71, Dale, wnvl2 and 1 other person
@wnvl2 $$\cos(\omega t) \sin( k x) = \frac{1}{2} \sin (kx - \omega t) + \frac{1}{2} \sin (kx + \omega t)$$which explains what went wrong.

But there's no need for this. Why not just substitute directly into ##\cos(\omega t) \sin( k x)##? The ##\sin( k x)## term remains unaltered.
 
wnvl2 said:
This means that ##E_x## transforms into ##\kappa E_x##. I assume that in the xyz frame the magnetic field is everywhere 0.

Electromagnetic waves are transverse waves. Therefore, ##E_x = B_x = 0## in this scenario, with one wave moving in +x direction and the other in -x direction. The ##E## vector and ##B## vector are perpendicular to the x-direction and to each other. The magnetic field is not everywhere 0.
 
Last edited:
  • Like
Likes   Reactions: vanhees71
wnvl2 said:
A first conclusion is that I have not anymore a standing wave.
It still seems to be a standing wave, although it is more difficult to see that since you split it into two traveling waves.
 
Last edited:
I did already some corrections to the opening post. Too many errors😔

There is no possible measurement, no matter how clever, that can measure the one way speed of light. It is a synchronization convention. In this topic I would like to apply this idea on a specific case.

I have a microwave oven with width L. In this oven I have a standing wave.

$$E(t,x)=E cos(\omega t) sin( k x) $$

with ##k = \frac{\pi}{L}## and ##c = \frac{\omega}{k}##.

We can split this standing wave into a left and a right moving wave.

$$-\frac{E}{2} sin (\omega t - kx) + \frac{E}{2} sin (\omega t + kx)$$

Now I want to see what happens if we switch to another synchronization where the speed of the right-moving wave is
##c^{+}## is ##\frac{c}{2\epsilon}## and the speed of the left moving wave ##c^{-}## is ##\frac{c}{2(1-\epsilon)}##.

The Reisenbach synchronisation transformation looks like

$$ \begin{bmatrix}
ct \\
x \\
y \\
z \\
\end{bmatrix} = \Lambda \begin{bmatrix}
ct' \\
x' \\
y' \\
z' \\
\end{bmatrix}$$

with $$ \Lambda = \begin{bmatrix}
1 & \kappa & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix} $$

and ##\kappa=2 \epsilon-1##

This means that the electromagnetic field tensor

$$F^{\mu \nu} = \begin{bmatrix}
0 & 0 & -\frac{E_y}{c} & 0\\
0 & 0 & -B_z & 0\\
\frac{E_y}{c} & B_z & 0 & 0\\
0 & 0 & 0 & 0\\
\end{bmatrix} $$

will transform according to

$$\Lambda^T F^{\mu \nu} \Lambda $$

This means that ##E_y## remains ##E_y##

The waves in the new frame x'y'z' transform into

$$-\frac{\kappa E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) - kx') + \frac{E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) + kx')$$

$$-\frac{\kappa E}{2} sin (\omega t'-(\omega\frac{\kappa}{c} - k)x') + \frac{E}{2} sin (\omega t'- (\omega \frac{\kappa}{c} + k)x')$$

A first conclusion is that I still have a standing wave.
 
Last edited:
  • Like
Likes   Reactions: Dale and vanhees71
  • #10
wnvl2 said:
@Sagittarius A-Star

Yes, I have ##E_x = 0## and ##B_x = 0##. If I have E_y, does that correspond to ##B_z = \frac {E_y}{c}## or ##B_z = \frac {-E_y}{c}##?

  • For a normal wave it depends on which direction you call "y" and which "z". In physics, the usual default for the orientation of the x-, y-, z- axes is as cited below. In this case ##B_z = \frac {E_y}{c}## is correct.
Wikipedia said:
The orientation is usually chosen so that the 90 degree angle from the first axis to the second axis looks counter-clockwise when seen from the point (0, 0, 1); a convention that is commonly called the right hand rule.
Source:
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Three_dimensions

Wikipedia said:
##\mathbf B = \frac{1}{c_0} \hat {\mathbf k} \times \mathbf E##
Source:
https://en.wikipedia.org/wiki/Electromagnetic_radiation#Derivation_from_electromagnetic_theory

 
Last edited:
  • Like
Likes   Reactions: wnvl2
  • #11
That is true, it is too long ago that I studied TEM waves.:rolleyes:
 
  • #12
When I calculate ##\Lambda^T F^{\mu \nu} \Lambda##, I get

$$
F'^{\mu \nu} = \begin{bmatrix}
0 & 0 & -\frac{E_y}{c} & 0\\
0 & 0 & -\frac{\kappa E_y}{c}-B_z& 0\\
\frac{E_y}{c} & \frac{\kappa E_y}{c}+B_z & 0 & 0\\
0 & 0 & 0 & 0\\
\end{bmatrix}
$$

This means that the value of the electric field does not change, but the value of the magnetic field changes after the synchronisation transformation.
 
  • #13
You don't need the ##\mu\nu## if you are using matrix notation. Or, rather, you should put indices on your ##\Lambda##s too.

I think you'll find that because ##E_y=E_y(x,t)## and you want ##E'_y(x',t')## then your transformed electric field is slightly different.
 
  • Like
Likes   Reactions: vanhees71
  • #14
and don't forget that you have necessarily magnetic field components too.
 
  • #15
Ibix said:
You don't need the ##\mu\nu## if you are using matrix notation. Or, rather, you should put indices on your ##\Lambda##s too.
Unbelievable how many mistakes I make😱

$$F^{'\alpha\beta} = \Lambda^{\alpha}_{\mu} \Lambda^{\beta}_{\nu} F^{\mu \nu} $$

or

$$F' = \Lambda F \Lambda^T$$
 
  • #16
Ibix said:
I think you'll find that because ##E_y=E_y(x,t)## and you want ##E'_y(x',t')## then your transformed electric field is slightly different.
I get

$$F' = \begin{bmatrix}

0 & 0 & -\frac{E_y}{c} & 0\\

0 & 0 & -\frac{\kappa E_y}{c}-B_z& 0\\

\frac{E_y}{c} & \frac{\kappa E_y}{c}+B_z & 0 & 0\\

0 & 0 & 0 & 0\\

\end{bmatrix}$$

I don't see that change in electric field, it is still ##E_y##. For the magnetic field in the z direction I see a change.
 
  • #17
wnvl2 said:
I get

$$F' = \begin{bmatrix}

0 & 0 & -\frac{E_y}{c} & 0\\

0 & 0 & -\frac{\kappa E_y}{c}-B_z& 0\\

\frac{E_y}{c} & \frac{\kappa E_y}{c}+B_z & 0 & 0\\

0 & 0 & 0 & 0\\

\end{bmatrix}$$

I don't see that change in electric field, it is still ##E_y##. For the magnetic field in the z direction I see a change.
Yes, but ##E_y=E\cos(kx)\sin(\omega t)=E\cos(kx')\sin(\omega(t'-\kappa x'))##. The change in the functional form of ##E## is (in this case) solely from the change in the functional form of the coordinates. For ##B## it is both the transformation of ##F## and of the coordinates.
 
  • Like
Likes   Reactions: wnvl2 and vanhees71

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 59 ·
2
Replies
59
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K