I finally found a result I believe for the the asymptotic metric (valid for large r) of a pair of bodies in a circular orbit emitting gravitational waves. I use spherical coordinates, ##[t, r, \theta, \phi]##.(adsbygoogle = window.adsbygoogle || []).push({});

If we let the linearized metric ##g_{\mu\nu}## be equal to the sum of a flat metric ##\eta_{\mu\nu}## and a pertubation metric ##h_{\mu\nu}##, then the approximate solution is:

$$\eta_{\mu\nu} = \begin{bmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix} \quad h_{\mu\nu} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & k r \cos \psi & k r \sin \theta \sin \psi \\ 0 & 0 & k r \sin \theta \sin \psi & -k r \sin^2 \theta \cos \psi \end{bmatrix}$$

Here k is an arbitrary constant which depends on the quadrupole moment of the pair of bodies, and ##\psi = 2 \omega (t - r/c)## is a function of retarded time t-r/c. The wave propagates radially outward from the origin. In my actual calculations I simplified things by setting c=1 and ##\omega## = 1/2.

This metric only satisfies the Einstein field equations for large r. Because of this, rather than using the Lorentz gauge (which the solution only approximately satisfies), I used the arbitrary non-gauge formula to compute the Ricci tensor to check the solution. The specifics were:

$$\Gamma^a{}_{bc} = \frac{1}{2}( h_a{}^u{}_{,b} + h_b{}^u{}_{,a} - h_{ab}{}^{,u}) \quad R^a{}_{bcd} = \Gamma^a{}_{bd,c} - \Gamma^a{}_{bc,d} \quad R_{bc} = R^a{}_{bac}$$

Here a comma represents taking the partial derivative. Note that only partial derivatives are needed, something that surprised me enough that I rechecked my text (MTW) on the topic.

I found it convenient to re-write the metric and the Ricci tensor I computed from the above in an orthonormal basis of one-forms with

$$e^\hat{t} = dt \quad e^\hat{r} = dr \quad e^\hat{\theta} = r d\theta \quad e^\hat{\phi} = r \sin \theta \, d \phi$$

Representing the tensors in this basis by putting a "hat" over the basis symbols, I found:

$$h_{\hat{a}\hat{b}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & k \frac{\cos \psi}{r} & k \frac{\sin \psi}{r} \\ 0 & 0 & k \frac{\sin \psi}{r} & - k \frac{ \cos \psi}{r} \end{bmatrix} R_{\hat{a}\hat{b}} \approx \begin{bmatrix} 0 & 0 & 0 & O(\frac{1}{r^2}) \\ 0 & 0 & 0 & O(\frac{1}{r^3}) \\ 0 & 0 & O(\frac{1}{r^2}) & O(\frac{1}{r^2}) \\ O(\frac{1}{r^2}) & O(\frac{1}{r^3}) & O(\frac{1}{r^2}) & O(\frac{1}{r^3}) \end{bmatrix} $$

Note the solution isn't quite completely correct to order 1/r, because it is linearized to a flat background metric, when we really expect the static part of the metric for a pair of orbiting bodies to be not quite flat, but to have time dilation terms in ##g_{tt}## of order 1/r.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Approximate metric for a pair of bodies in a circular orbit

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Approximate metric pair | Date |
---|---|

B Uniform-gravitational time dilation -- exact or approximate | Jul 24, 2017 |

I Derivation of magnetic force using approximated gamma-factor | Jan 15, 2017 |

I Special Relativity Approximation of Gravitation | Sep 13, 2016 |

I Gravitation waves and post-newtonian approximation | Jul 21, 2016 |

Approximate Metric for Growing Black Hole | Oct 5, 2014 |

**Physics Forums - The Fusion of Science and Community**