MHB Approximation of the integral using Gauss-Legendre quadrature formula

AI Thread Summary
The discussion focuses on using the Gauss-Legendre quadrature formula to approximate the integral of the function √sin(x) over the interval [0, π]. Participants explore the existence of a polynomial of degree 2n+2 that does not satisfy the quadrature formula and calculate the integral using two nodes. Initial calculations reveal discrepancies in polynomial coefficients and weights, prompting a review of the integration method and the application of orthogonal polynomials. After correcting a sign error in the weight calculations, the approximate value of the integral is found to be around 2.4662, acknowledging that this is not the exact value due to the limitations of using only two nodes. The discussion concludes with an understanding of the inherent error in quadrature approximations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $\displaystyle{I_n(f)=\sum_{i=0}^na_if(x_i)}$ be a quadrature formula for the approximate calculation of the integral $I(f)=\int_a^bf(x)\, dx$.

Show that a polynomial $p$ of degree $2n+2$ exists such that $I_n(p)\neq I(p)$.

Calculate the approximation of the integral $$\int_0^{\pi}\sqrt{\sin (x)}\, dx$$ using Gauss-Legendre quadrature formula with $2$ nodes.
For the second part I have done the following :

We get the orthogonal polynomials by the recurive formula:
\begin{align*}&P_n(x)=(a_n+x)P_{n-1}(x)+c_nP_{n-2}(x) \\ &P_0=1, \ P_{-1}=0\end{align*} with \begin{equation*}a_n=-\frac{\langle x\cdot P_{n-1}, P_{n-1}\rangle_w}{\langle P_{n-1}, P_{n-1}\rangle_w}, \ \ \ , c_n=-\frac{\langle P_{n-1}, P_{n-1}\rangle_w}{\langle P_{n-2}, P_{n-2}\rangle_w}\end{equation*}
We have :
\begin{equation*}P_1(x)=(a_1+x)P_{0}(x)+c_1P_{-1}(x)=(a_1+x)\cdot 1+c_1\cdot 0=a_1+x \end{equation*}
We need to calculate $a_1$:
\begin{equation*}a_1=-\frac{\langle x\cdot P_{0}, P_{0}\rangle_w}{\langle P_{0}, P_{0}\rangle_w}=-\frac{\langle x, 1\rangle_w}{\langle 1, 1\rangle_w}\end{equation*}
We have that \begin{align*}&\langle x, 1\rangle_w=\int_0^{\pi}x\cdot 1\cdot w(x)\, dx=\int_0^{\pi} x\cdot 1\, dx =\frac{\pi^2}{2} \\ &\langle 1, 1\rangle_w=\int_0^{\pi}1\cdot 1\cdot 1\, dx=\int_0^{\pi} 1\, dx =\pi\end{align*}
So we have that $a_1=-\frac{\pi}{2}$. Therefore we get $P_1=-\frac{\pi}{2}+x$.

We have that
\begin{equation*}P_2(x)=(a_2+x)P_{1}(x)+c_2P_{0}(x)=(a_2+x)\cdot \left (-\frac{\pi}{2}+x\right )+c_2\end{equation*}
We need to calculate $a_2$ and $c_2$:
\begin{equation*}a_2=-\frac{\langle x\cdot P_{1}, P_{1}\rangle_w}{\langle P_{1}, P_{1}\rangle_w}=-\frac{\langle x\cdot \left (-\frac{\pi}{2}+x\right ), -\frac{\pi}{2}+x\rangle_w}{\langle -\frac{\pi}{2}+x, -\frac{\pi}{2}+x\rangle_w}=-\frac{\langle -\frac{\pi}{2}x+x^2, -\frac{\pi}{2}+x\rangle_w}{\langle -\frac{\pi}{2}+x, -\frac{\pi}{2}+x\rangle_w}\end{equation*}
We have that \begin{align*}&\langle -\frac{\pi}{2}x+x^2, -\frac{\pi}{2}+x\rangle_w=\int_0^{\pi}\left (-\frac{\pi}{2}x+x^2\right )\cdot \left (-\frac{\pi}{2}+x\right )\cdot 1\, dx=\frac{\pi^4}{24} \\ &\langle -\frac{\pi}{2}+x, -\frac{\pi}{2}+x\rangle_w=\int_0^{\pi}\left (-\frac{\pi}{2}+x\right )\cdot \left (-\frac{\pi}{2}+x\right )\cdot 1\, dx=\frac{\pi^3}{12}\end{align*}
So we have that $a_2=-\frac{\frac{\pi^4}{24}}{\frac{\pi^3}{12}}=-\frac{\pi}{2}$ and $c_2=-\frac{\langle P_{1}, P_{1}\rangle_w}{\langle P_{0}, P_{0}\rangle_w}=-\frac{\frac{\pi^3}{12}}{\pi}=-\frac{\pi^2}{12}$.
Therefore we get $P_2=(-\frac{\pi}{2}+x)\cdot \left (-\frac{\pi}{2}+x\right )-\frac{\pi^2}{12}$.

But this is not correct, is it? Do we not have to get $P_2(x)=\frac{1}{2}\left (3x^2-1\right )$ ? :unsure:
 
Last edited by a moderator:
Mathematics news on Phys.org
Hey mathmari,

According to wiki, we should use orthogonal polynomials on $[-1,1]$ with the convention that $P_n(1)=1$, and apply a change of interval to map it to $[0,\pi]$.
Your expected $P_2(x)=\frac 12(3x^2-1)$ is based on polynomials on $[-1,1]$.
But your calculations are on $[0,\pi]$ and it is not clear to me, which convention applies in that case, nor whether we can use the recursive formulas as given. :unsure:

The wiki page gives $x_i=\pm\frac{1}{\sqrt 3}$ and $w_i=1$ for a quadrature with 2 nodes on the interval $[-1,1]$.
If I apply a change of interval I think we get $\tilde x_i=\frac\pi 2\left(1\pm\frac 1{\sqrt 3}\right)$ and $\tilde w_i=\frac\pi 2$. :unsure:
 
Klaas van Aarsen said:
The wiki page gives $x_i=\pm\frac{1}{\sqrt 3}$ and $w_i=1$ for a quadrature with 2 nodes on the interval $[-1,1]$.
If I apply a change of interval I think we get $\tilde x_i=\frac\pi 2\left(1\pm\frac 1{\sqrt 3}\right)$ and $\tilde w_i=\frac\pi 2$. :unsure:

So the polynomial I found must be correct, right?

The nodes are the roots of $P_2(x)=x^2-\pi x+\frac{\pi^2}{6}$, which are $x_1=\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)$, $x_2=\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)$.

The weights are:
\begin{align*}w_1&= \int_0^{\pi}w(x)\prod_{j=1, j\neq 1}^2\frac{x-x_j}{x_1-x_j}\, dx=\int_0^{\pi}w(x)\cdot \frac{x-x_2}{x_1-x_2}\, dx=\int_0^{\pi}1\cdot \frac{x-\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)}{\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)-\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)}\, dx\\ & =\int_0^{\pi}\frac{x-\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)}{-\frac{\pi}{\sqrt{3}}}\, dx=\frac{\pi}{2}\\ w_2&=\int_0^{\pi}w(x)\prod_{j=1, j\neq 2}^2\frac{x-x_j}{x_2-x_j}\, dx=\int_0^{\pi}w(x)\frac{x-x_1}{x_2-x_1}\, dx=\int_0^{\pi}1\cdot \frac{x-\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)}{\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)-\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)}\, dx \\ & =\int_0^{\pi} \frac{x-\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)}{-\frac{\pi}{\sqrt{3}}}\, dx=-\frac{\pi}{2}\end{align*}
Therefore the formula is \begin{align*}&\int_0^{\pi}f(x)\, dx\approx \sum_{i=1}^2f(x_i)\cdot w_i=f(x_1)\cdot w_1+f(x_2)\cdot w_2 \\ & \Rightarrow \int_0^{\pi}\sqrt{\sin (x)}\, dx=\sqrt{\sin \left (\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)\right )}\cdot \frac{\pi}{2}+\sqrt{\sin \left (\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)\right )}\cdot \left (-\frac{\pi}{2}\right )=0.7850\cdot 1.5708-0.7850\cdot 1.5708=0\end{align*}
But this is not correct, shouldn't the result be about $2.3963$ ? Have I done something wrong at the calculations or is the formula wrong? I don't really see a mistake. :unsure:
 
mathmari said:
But this is not correct, shouldn't the result be about $2.3963$ ? Have I done something wrong at the calculations or is the formula wrong? I don't really see a mistake.
I believe $w_2$ should be $+\frac\pi 2$. If we substitute that, we get indeed about $2.3963$.
There seems to be a sign mistake where you substituted into $x_2-x_1$ in the denominator. 🤔
 
Klaas van Aarsen said:
I believe $w_2$ should be $+\frac\pi 2$. If we substitute that, we get indeed about $2.3963$.
There seems to be a sign mistake where you substituted into $x_2-x_1$ in the denominator. 🤔

Ah yes, you are right!

So we have:
\begin{align*}&\int_0^{\pi}f(x)\, dx\approx \sum_{i=1}^2f(x_i)\cdot w_i=f(x_1)\cdot w_1+f(x_2)\cdot w_2 \\ & \Rightarrow \int_0^{\pi}\sqrt{\sin (x)}\, dx=\sqrt{\sin \left (\frac\pi 2\left(1-\frac 1{\sqrt 3}\right)\right )}\cdot \frac{\pi}{2}+\sqrt{\sin \left (\frac\pi 2\left(1+\frac 1{\sqrt 3}\right)\right )}\cdot \frac{\pi}{2}=0.7850\cdot 1.5708+0.7850\cdot 1.5708=2.4662\end{align*}
There is a difference to $2.3963$,but is this a mistake at the calculations or is this an error because of the roundings? :unsure:
 
mathmari said:
So we have:
\begin{align*}&\int_0^{\pi}f(x)\, dx\approx 2.4662\end{align*}
There is a difference to $2.3963$,but is this a mistake at the calculations or is this an error because of the roundings?
Neither. (Shake)

It's a quadrature approximation with only 2 nodes. So we won't find the exact value of the integral.
Apparently the method has an error of about $0.07$ in this case. 🤔
 
Klaas van Aarsen said:
Neither. (Shake)

It's a quadrature approximation with only 2 nodes. So we won't find the exact value of the integral.
Apparently the method has an error of about $0.07$ in this case. 🤔

Ah ok, I see! Thank you very much! 🤩
 

Similar threads

Back
Top