JCMateri
- 7
- 3
I am having trouble with the arc length for hyperbolic sine. Can anyone help?
$$L=\int_{0}^{X}\sqrt{1+[\frac{dsinh(x)}{dx}]^2}dx=\int_{0}^{X}\sqrt{1+cosh^2(x)}dx$$
I'm having trouble evaluating the final integral.
$$L=\int_{0}^{X}\sqrt{1+[\frac{dsinh(x)}{dx}]^2}dx=\int_{0}^{X}\sqrt{1+cosh^2(x)}dx$$
I'm having trouble evaluating the final integral.
Last edited by a moderator: