Critical points and roots are not interchangeable terms in mathematics. A critical point refers to values of x where a function's first derivative is zero or undefined, while roots are the values of x that make the function equal to zero. In solving rational inequalities, critical values indicate boundaries for the solution set, distinguishing between where the function is defined and where it equals zero. For example, in the inequality provided, critical values partition the x-values into regions that determine the solution set. Thus, critical roots are numerical values, while critical points represent coordinates in a Cartesian plane.