MHB Are these lines parallel, perpendicular, or neither?

AI Thread Summary
The discussion focuses on solving a quadratic equation and determining the relationship between two lines. The quadratic equation 2x^2 + 4x - 15 = 0 was incorrectly solved, with the correct solution being x = -1 ± √(34)/2. For the lines y = -4x + 3 and x - 4y = 4, it was confirmed that they are perpendicular, as the product of their slopes equals -1. The participant received clarification on both problems, affirming their understanding. The thread highlights the importance of verifying mathematical solutions and relationships between lines.
drop
Messages
14
Reaction score
0
Basically I don't know anyone in real life that can help me with this, so I need help checking to see if my answers are correct :)

PART A

3) Solve 2x^2 + 4x = 15 by using the quadratic formula.

x = -1 +/- 2sqr34

4) Determine whether the given pairs of lines are parallel, perpendicular, or neither.

a) y = -4x + 3 b) x - 4y = 4

My answer: Perpendicular
 
Mathematics news on Phys.org
Re: Please check my answers - 2

3.) Incorrect.

We have:

$$2x^2+4x-15=0$$

$$x=\frac{-4\pm\sqrt{(4)^2-4(2)(-15)}}{2(2)}=\frac{-4\pm\sqrt{136}}{4}=\frac{-4\pm2\sqrt{34}}{4}=\frac{-2\pm\sqrt{34}}{2}$$

We could choose to write this as:

$$x=-1\pm\sqrt{\frac{17}{2}}$$

4.)

a) Correct. The product of the slopes of the two lines is -1.
 
Re: Please check my answers - 2

Thank you ! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top