Area of Triangle ABC: Find the Answer Here

  • Context: MHB 
  • Thread starter Thread starter ketanco
  • Start date Start date
  • Tags Tags
    Area Triangle
Click For Summary
SUMMARY

The area of triangle ABC is definitively calculated to be 18 square units. The discussion highlights the relationship between the areas of triangles ACD and ABD, noting that the area of ACD is three times that of ABD. A suggestion is made to extend line AC to point E, establishing similarity between triangles ACD and ECB, which aids in understanding the area calculations. The geometric properties and relationships are crucial for solving the problem effectively.

PREREQUISITES
  • Understanding of triangle area calculations
  • Familiarity with geometric similarity concepts
  • Knowledge of coordinate geometry
  • Proficiency in using geometric drawing tools
NEXT STEPS
  • Study the properties of similar triangles in geometry
  • Learn about coordinate geometry techniques for area calculation
  • Explore advanced triangle area formulas, including Heron's formula
  • Investigate geometric transformations and their applications in problem-solving
USEFUL FOR

Students, educators, and professionals in mathematics or engineering who are interested in geometric problem-solving and area calculations of triangles.

ketanco
Messages
15
Reaction score
0
what is the area of triangle ABC in the attached? answer is 18

i can not construct any similar triangles here. all i can see is area of ACD is 3 times area of ABD but how does it help me...
View attachment 8598
 

Attachments

  • 06-4.jpg
    06-4.jpg
    17.1 KB · Views: 99
Mathematics news on Phys.org
ketanco said:
what is the area of triangle ABC in the attached? answer is 18

i can not construct any similar triangles here. all i can see is area of ACD is 3 times area of ABD but how does it help me...

How about extending AC to E such that ACD is similar to ECB?

[TIKZ]
\def\x{sqrt(265)/4}
\def\gamma{atan2(3,16)}
\coordinate[label=above:A] (A) at ({4*\x - 12 * cos(\gamma)},{12 * sin(\gamma)});
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at ({4*\x},0);
\coordinate[label=below:D] (D) at ({\x},0);
\coordinate[label=above:E] (E) at ({4*\x - 16 * cos(\gamma)},{16 * sin(\gamma)});

\draw[rotate={270-\gamma}] (A) +(0.4,0) -- +(0.4,0.4) -- +(0,0.4);
\draw[rotate={270-\gamma}] (E) +(0.4,0) -- +(0.4,0.4) -- +(0,0.4);

\draw (C) -- node[above] {12} (A) -- node[above left] {5} (B);
\draw (A) -- (D);
\draw (A) -- (E) -- (B);
\path (B) -- node[below] {$x$} (D) -- node[below] {$3x$} (C);
\draw[blue, ultra thick] (A) -- (B) -- (C) -- cycle;
[/TIKZ]
 
Klaas van Aarsen said:
How about extending AC to E such that ACD is similar to ECB?

[TIKZ]
\def\x{sqrt(265)/4}
\def\gamma{atan2(3,16)}
\coordinate[label=above:A] (A) at ({4*\x - 12 * cos(\gamma)},{12 * sin(\gamma)});
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at ({4*\x},0);
\coordinate[label=below:D] (D) at ({\x},0);
\coordinate[label=above:E] (E) at ({4*\x - 16 * cos(\gamma)},{16 * sin(\gamma)});

\draw[rotate={270-\gamma}] (A) +(0.4,0) -- +(0.4,0.4) -- +(0,0.4);
\draw[rotate={270-\gamma}] (E) +(0.4,0) -- +(0.4,0.4) -- +(0,0.4);

\draw (C) -- node[above] {12} (A) -- node[above left] {5} (B);
\draw (A) -- (D);
\draw (A) -- (E) -- (B);
\path (B) -- node[below] {$x$} (D) -- node[below] {$3x$} (C);
\draw[blue, ultra thick] (A) -- (B) -- (C) -- cycle;
[/TIKZ]
i see... thanks !
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K