Area Under Curve: Finding the Missing Area

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Area Curve
Click For Summary
SUMMARY

The area between the curve defined by the function \(f(x) = x \cdot \ln^2(x) - x\) and the x-axis is calculated using the definite integral \(\int_{\frac{1}{e}}^{e}(x - x \cdot \ln^2(x))dx\), yielding an approximate area of 1.95 square units. The discussion clarifies that the area from 0 to \(\frac{1}{e}\) is not included in this calculation, as the curve does not cross the x-axis in that interval. The final area is derived by taking the absolute value of the integral, which is negative due to the curve lying below the x-axis between \(\frac{1}{e}\) and \(e\).

PREREQUISITES
  • Understanding of definite integrals and area under curves
  • Familiarity with logarithmic functions and their properties
  • Knowledge of integration techniques, including integration by parts
  • Experience with mathematical software like Maple for graphing functions
NEXT STEPS
  • Study the application of L'Hôpital's Rule in evaluating limits involving logarithmic functions
  • Learn advanced integration techniques, particularly integration by parts
  • Explore the properties of logarithmic functions and their behavior near zero
  • Investigate the use of Maple for visualizing functions and calculating areas under curves
USEFUL FOR

Mathematicians, calculus students, and educators seeking to deepen their understanding of area calculations under curves, particularly those involving logarithmic functions and definite integrals.

Yankel
Messages
390
Reaction score
0
Hello,

I am looking for the area between

\[f(x)=x\cdot ln^{2}(x)-x\]

and the x-axis.

I have a solution in hand, it suggests that the area is:

\[\int_{\frac{1}{e}}^{e}(x-x\cdot ln^{2}(x))dx\approx 1.95\]

I have a problem with this solution, I don't understand where the area between 0 and 1/e had gone to...

I plotted the function in maple, and an area is appearing very clearly (see photo).

View attachment 2029

So my question: Do you think like me, that the solution attached to this exercise is wrong? If not, where does this area gone to ?

thanks !
 

Attachments

  • Capture.PNG
    Capture.PNG
    2.4 KB · Views: 107
Physics news on Phys.org
What is the domain of the given curve?
 
x>0 ?
 
Yankel said:
x>0 ?

Yes, and so even though we may state (and you may want to verify this with L'Hôpital's Rule):

$$\lim_{x\to0}f(x)=0$$

Can we say that the point $(0,0)$ is actually on the curve?
 
(0,0) is not on the curve, I know. But what about the area from 0 to 1\e ? I can't ignore it because 0 is not on the graph.
 
If the origin is not on the curve, then can we say that area to which you refer is truly bounded?
 
A-ha, now I understand what you say...
Didnt see it coming.
Thanks ! Great help.
 
Yankel said:
Hello,

I am looking for the area between

\[f(x)=x\cdot ln^{2}(x)-x\]

and the x-axis.

I have a solution in hand, it suggests that the area is:

\[\int_{\frac{1}{e}}^{e}(x-x\cdot ln^{2}(x))dx\approx 1.95\]

I have a problem with this solution, I don't understand where the area between 0 and 1/e had gone to...

I plotted the function in maple, and an area is appearing very clearly (see photo).

View attachment 2029

So my question: Do you think like me, that the solution attached to this exercise is wrong? If not, where does this area gone to ?

thanks !

Mark is correct that the only bounded area is where $\displaystyle \begin{align*} \frac{1}{e} \leq x \leq e \end{align*}$. Notice that this region is BELOW the x axis, so you will get a negative answer. But since you are asked for the AREA, you must give the absolute value of this amount (as areas, being a physical quantity, are always nonnegative).

Now as for the actual integration...

$\displaystyle \begin{align*} \int_{\frac{1}{e}}^e{x\left[ \ln{(x)} \right] ^2 - x \, dx } &= \int_{\frac{1}{e}}^e{x\left\{ \left[ \ln{(x)} \right] ^2 - 1 \right\} \, dx } \\ &= \int_{\frac{1}{e}}^e{\frac{x^2 \left\{ \left[ \ln{(x)} \right] ^2 - 1 \right\} }{x}\, dx} \end{align*}$

Now make the substitution $\displaystyle \begin{align*} t = \ln{(x)} \implies dt = \frac{1}{x}\,dx \end{align*}$, and note that when $\displaystyle \begin{align*} x = \frac{1}{e}, t = -1 \end{align*}$ and when $\displaystyle \begin{align*} x = e, t = 1 \end{align*}$, the integral becomes

$\displaystyle \begin{align*} \int_{\frac{1}{e}}^e{\frac{x^2 \left\{ \left[ \ln{(x)} \right] ^2 - 1 \right\} }{x}\,dx} &= \int_{-1}^1{ \left( e^t \right) ^2 \left( t^2 - 1 \right) \, dt } \\ &= \int_{-1}^1{e^{2t} \left( t^2 - 1 \right) \, dt } \end{align*}$

Now applying integration by parts with $\displaystyle \begin{align*} u = t^2 - 1 \implies du = 2t\,dt \end{align*}$ and $\displaystyle \begin{align*} dv = e^{2t} \, dt \implies v = \frac{1}{2}e^{2t} \end{align*}$ we have

$\displaystyle \begin{align*} \int{ e^{2t} \left( t^2 - 1 \right) \, dt} &= \frac{1}{2} e^{2t} \left( t^2 - 1 \right) - \int{t\,e^{2t}\,dt} \end{align*}$

and applying integration by parts again with $\displaystyle \begin{align*} u = t \implies du = dt \end{align*}$ and $\displaystyle \begin{align*} dv = e^{2t} \, dt \implies v = \frac{1}{2} e^{2t} \end{align*}$ and we have

$\displaystyle \begin{align*} \frac{1}{2}e^{2t} \left( t^2 - 1 \right) - \int{t\,e^{2t}\,dt} &= \frac{1}{2}e^{2t} \left( t^2 - 1 \right) - \left( \frac{1}{2}t\,e^{2t} - \int{\frac{1}{2} e^{2t}\, dt} \right) \\ &= \frac{1}{2} e^{2t} \left( t^2 - 1 \right) - \frac{1}{2} t\, e^{2t} + \frac{1}{2} \int{ e^{2t} \, dt} \\ &= \frac{1}{2}e^{2t} \left( t^2 - 1 \right) - \frac{1}{2} t\, e^{2t} + \frac{1}{4}e^{2t} + C \\ &= \frac{1}{2} e^{2t} \left( t^2 - 1 - t + \frac{1}{2} \right) + C \\ &= \frac{1}{2} e^{2t} \left( t^2 - t - \frac{1}{2} \right) + C \end{align*}$

and so evaluating the definite integral we have

$\displaystyle \begin{align*} \int_{-1}^1{e^{2t} \left( t^2 - 1 \right) \, dt} &= \frac{1}{2} \left[ e^{2t} \left( t^2 - t - \frac{1}{2} \right) \right] _{-1}^1 \\ &= \frac{1}{2} \left( -\frac{1}{2}e^2 - \frac{3}{2}e^{-2} \right) \\ &= -\frac{1}{4} \left( e^2 + 3e^{-2} \right) \\ &\approx. -1.95 \end{align*}$

So the area you are looking for is $\displaystyle \begin{align*} -\frac{1}{4} \left( e^2 + 3e^{-2} \right) \,\textrm{units}^2 \approx 1.95 \, \textrm{units}^2 \end{align*}$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K