Area using Parametric Equations

Click For Summary
The discussion focuses on finding the total area inside a loop defined by the parametric equations x = 36 - t^2 and y = t^3 - 25t. To calculate the area, the integral formula requires determining the values of t, referred to as alpha and beta, where the curve intersects itself. Participants suggest solving the simultaneous equations derived from the parametric equations to find these t values. It is noted that plotting points may help in identifying the correct t values, particularly since x(t) = x(-t) and y(t) = -y(-t). The key challenge lies in systematically finding the t values that yield the same x and y coordinates.
Mandanesss
Messages
37
Reaction score
0

Homework Statement



Notice the curve given by:
f(t) = x = 36-t^2
g(t) = y = (t^3)-25*t
The curve makes a loop which lies along the x-axis. What is the total area insde the loop.

Homework Equations



Integral from alpha to beta of g(t)*f'(t) dt

The Attempt at a Solution



Ok, so I can easily plug in g(t) and f'(t) into the formula to find the integral. The problem is, I don't understand how to find alpha and beta. I know that if I find where t intersects itself, then I could the alpha and beta. But how do I know where t intersects itself? Please help me out!
 
Physics news on Phys.org
You want to find two different values of t that give the same values for x and y. So if t=a, and t=b are those values you want to solve the simultaneous equations:

36-a^2=36-b^2
a^3-25*a=b^3-25*b

This is very difficult to do systematically. Your best bet is to plot some points and take a guess. In this case you could observe that x(t)=x(-t), repeating values of x need equal and opposite t's. One the other hand y(t)=-y(-t). So the only way you could get a repeating value of y at the same t that x repeats is for y(t)=0. Can you find a pair of t values?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K