B Artificial gravity rotating on two axes

Click For Summary
The discussion centers on the complexities of rotating objects and the concept of artificial gravity in a spaceship. It explores whether an object can stably rotate on two axes simultaneously, noting that angular momentum typically points in one direction, complicating the notion of dual-axis rotation. Participants debate the implications of gyroscopic precession and the effects of external forces on rotation, emphasizing that any rigid body can only have a single rotational vector at a time. The conversation also touches on the mathematical representation of combined rotations, suggesting that they can be modeled as a single rotation around an oblique axis. Ultimately, the thread highlights the challenges in conceptualizing and defining rotation in three-dimensional space.
DaveC426913
Gold Member
Messages
24,010
Reaction score
8,166
TL;DR
What would occupants experience inside a spaceship rotating on two axes?
The world building thread about a derelict spaceship got me wondering.

An object can rotate on two axes simultaneously, yes? Is that stable in flat space?

If so, what would occupants experience as gravity? Would it change over time?
 
Physics news on Phys.org
Are you imagining that if there were dwarfs in these bottles what would they experience ?

If they are floating in the hollow space in the bottle, they feel no gravity. The walls around are moving with no simple periodicity. If they have reference frame fixed with the walls, artificial gravity they feel would be complex one.
 
Last edited:
  • Like
  • Informative
Likes Delta2 and DaveC426913
Yes, if their spaceship were rotating, eventually air drag will bring them to the floor. There,inertia would be experienced as ersatz gravity.
 
For an object freely rotating there are two stable body axes of rotation (maximal an minimal moments of inertia). Other axes are unstable. So the rotating on two axes seems problematic.
 
  • Like
Likes TonyStewart
What does it even mean to be rotating about two axes? The angular momentum points in only one direction.
 
  • Like
Likes Delta2, phinds, vanhees71 and 3 others
Vanadium 50 said:
What does it even mean to be rotating about two axes? The angular momentum points in only one direction.
Gyroscopic precession is one way, I think. But can that happen in zero g without an applied force?

So, we take a stationary cigar-shaped spaceship, and set it spinning around its long axis.
Now we give one end a tap (or use attitude jets) to attempt to apply a rotation along a(ny) short axis.
What rotation does the ship get?

Is it always possible to sum these vectors to come up with a rotation about a single (albeit off-kilter) axis?

BTW, it is this thread/post that inspired this line of thought.
 
Last edited:
anuttarasammyak said:

Yes. The book in this video, 0:17s - 0:28s, appears to be rotating about two axes simultaneously.

I'm not sure if that is an objective phenomenon, or if it only seems to be rotating about two axes because the shape of the book strongly implies three very un-arbitrary axes to our brains, and therefore it we track two axes.

So, does a single (albeit oblique) axis of rotation exist for this book?

(I think it does. I think it's here:)
1652495249764.png
 

Attachments

  • 1652495078178.png
    1652495078178.png
    34.7 KB · Views: 156
Last edited:
Vanadium 50 said:
What does it even mean to be rotating about two axes? The angular momentum points in only one direction.

Yes, that would be like saying the Earth were rotating on multiple axes because of the wobble!
 
“The Bizarre Behavior of Rotating Bodies”.
 
  • #10


These are spinning in two axis. I’m not sure if that is stable in space however. I’m thinking it “wants” to change axis of rotation but it can’t because of the table top?
 
  • Like
Likes OmCheeto
  • #11
Baluncore said:
“The Bizarre Behavior of Rotating Bodies”.
Yes. I've seen this, and have thought of it. I'm not sure it answer my question, but it might be useful to @Melbourne Guy
 
  • Like
Likes Melbourne Guy
  • #12
This is what I thought the OP was originally asking. Imagine a very large enclosed gravity wheel turning in space at the correct speed, like the jogger on the space station on 2001 a Space Odyssey. Now imagine that the wheel was not turning but instead it was spinning on an axis that was a diameter of the wheel and the jogger was now standing still but the wheel was turning on the diameter axis at the correct speed such that it provided the correct artificial gravity such that the person could stand still on that spot.

Now, if I understand it correctly I think the OP was asking what would be the inertial forces on the person standing still if the wheel now also began rotating around it's original hub type rotation.
 
  • #13
bland said:
Yes, that would be like saying the Earth were rotating on multiple axes because of the wobble!
If there isn't a single axis of rotation, then (by definition) the motion is not a rotation.
 
  • Like
Likes Vanadium 50
  • #14
A rigid object can (obviously) only have a single rotational vector at any given instance in time, but this rotation vector may not be parallel to any of the principal axes of the object in which case it is called non-pure rotation. Since "rotation around two axis at once" does not really make any sense taken literally, I guess one could take it to mean non-pure rotation, but then why not just call it that, i.e non-pure rotation. Alternatively one could say "rotation around a non-principal axis".
 
  • Like
Likes russ_watters, jbriggs444 and PeroK
  • #15
Filip Larsen said:
Since "rotation around two axis at once" does not really make any sense taken literally

I'm not understanding something, is this following scenario not considered rotation about two axis at once?

Rotation round two axis.jpg
 
  • Like
  • Love
Likes Delta2, OmCheeto and DaveC426913
  • #16
erobz said:
I'm not understanding something, is this following scenario not considered rotation about two axis at once?

View attachment 301451
If we combine a rotation of angular frequency ##w_x## about the x-axis and ##w_z## about the z-axis, then we have a rotation about the axis ##(w_x, 0, w_z)##, with magnitude ##\sqrt{w_x^2 + w_z^2}##.

In other words, the continuous rotations add like vectors.
 
  • Wow
Likes Delta2
  • #17
erobz said:
is this following scenario not considered rotation about two axis at once
As mentioned, any rigid object can only have a single rotation vector at any given time, but it may very well be that such a vector is not parallel with the principal axis of the object. In your drawing that would be the black center line of the cylinder plus any two orthogonal axes in the plane through center of mass and orthogonal to the center line.

But perhaps you are asking why any rotation of a rigid body can be modeled as the rotation around a single axis? If so, the best quick answer I can come up with is Euler's rotation theorem which states that any sequence of spatial rotations can always be modeled as an equivalent rotation around a single axis. With a little hand-waving you can imagine that trying to rotate a free rigid object around two axis at once by applying two orthogonal torques will "combine" into a single resulting torque giving rotation around a single unique axis at any given time.
 
  • Informative
Likes DrClaude
  • #18
A few points to note.

1) If we ignore translation of the centre of mass of a rigid object, then any change to the object's position can only be a rotation.

2) As above, associated with any change in position there must be an axis and angle of rotation.

3) Although finite rotations do not commute, infinitesimal rotations do. Any continuous rotation, therefore, can be expressed as a vector ##\vec w = (w_x, w_y, w_z)##.

4) If, however, the components of ##\vec w## are changing continuously in different ways, then the resulting motion is not a continuous rotation - as the axis of rotation is changing with time. In which case, we can have continuous motion that is not a continuous rotation. (Even though at each instant we can find an instantaneous axis of rotation. And, the position of the rigid body at any time must be a rotation of its initial position).
 
  • Like
Likes vanhees71 and Filip Larsen
  • #19
People seem confused by rotation. Is a body moving northeast going "in two directions at once"?
 
  • Like
Likes Delta2, russ_watters, jbriggs444 and 1 other person
  • #20
Maybe this basic primer about rigid-body dynamics helps:

https://itp.uni-frankfurt.de/~hees/pf-faq/spinning-top.pdf

The momentary rotation of the body is, of course, described by the momentary angular velocity, which is one vector. It doesn't make sense to say something is "rotating on two axes", it's just momentarily rotating around one axis given by the direction of the angular velocity.
 
  • Like
Likes PeroK
  • #21
Vanadium 50 said:
People seem confused by rotation. Is a body moving northeast going "in two directions at once"?
No, it's just very hard to conceptualize - this:
PeroK said:
If we combine a rotation of angular frequency ##w_x## about the x-axis and ##w_z## about the z-axis, then we have a rotation about the axis ##(w_x, 0, w_z)##, with magnitude ##\sqrt{w_x^2 + w_z^2}##.

In other words, the continuous rotations add like vectors.
I'm going to munge some things in my head for a second:

Let's say we have a body rotating once per second about the x-axis and once per ten seconds about the z-axis.
So there is a single axis a out which this object is rotating.

It is rotating about axis (1,0,10) with magnitude ##\sqrt{101}##.
 
Last edited:
  • #22
DaveC426913 said:
It is rotating about axis (1,0,10) with magnitude 101
Yes, but with magnitude ##\sqrt{101}## rps.
 
  • #23
PeroK said:
Yes, but with magnitude ##\sqrt{101}## rps.
Yes. I was off searching for the root symbol to paste in.
 
  • Haha
Likes PeroK
  • #24
DaveC426913 said:
It is rotating about axis (1,0,10)
What does this mean though? What units are those? Or are they unitless, being merely ratiotic.
 
  • #25
DaveC426913 said:
Yes. I was off searching for the root symbol to paste in.
How can be rotating at about 10 rps when the two rotations have 1 rps and 0.1 rps? (or you don't mean rotations per second when you write "rps"?)
 
  • #26
DaveC426913 said:
What does this mean though? What units are those? Or are they unitless, being merely ratiotic.
It's just a direction. It doesn't need units as such.
 
  • #27
PeroK said:
It's just a direction. It doesn't need units as such.
Allow me to add a small note to others reading this to avoid confusion: when talking about angular velocity, and not just a rotation axis that only encodes the direction of the axis, then the magnitude of the vector (and thus each component) has the unit scale of "time-1"; in practice the unit rad/s is very often used.
 
  • #28
DaveC426913 said:
What does this mean though? What units are those? Or are they unitless, being merely ratiotic.
The correct unit for angular velocity is 1/s. ##|\vec{\omega}|## is the momentary change of the rotation angle per unit time.
 
  • #29
PeroK said:
It's just a direction. It doesn't need units as such.
Then you mean the unit vector defining the rotation axis, but ##\vec{\omega}## is angular velocity. You can of course write ##\vec{\omega}=|\vec{\omega}| \vec{n}##. Then ##\vec{n}## is dimension less and ##|\vec{n}|=1##; ##\vec{\omega}## has the dimension 1/s (in the SI).
 
  • #30
vanhees71 said:
Then you mean the unit vector defining the rotation axis, but ##\vec{\omega}## is angular velocity. You can of course write ##\vec{\omega}=|\vec{\omega}| \vec{n}##. Then ##\vec{n}## is dimension less and ##|\vec{n}|=1##; ##\vec{\omega}## has the dimension 1/s (in the SI).
The tuple ##(x, y, z)## defines a direction. It doesn't need units, per se. Usually it's a normalised unit vector ##(n_x, n_y, n_z)##. In any case, it's just three numbers.
 

Similar threads

Replies
38
Views
3K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
9
Views
4K
  • · Replies 22 ·
Replies
22
Views
562
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K